Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

UFS plans to improve undergraduate pass rate
2005-01-13

The University of the Free State (UFS) will introduce a new foundation programme this year 2005 in an effort to improve the academic performance of undergraduate students.

According to Mr Francois Marais, Head: Centre for Higher Education Studies and Development (CHESD) at the UFS, the programme will assist students by providing for the development of cognitive and critical thinking skills by means of the integration of appropriate thinking skills (such as creative thinking, decision-making, problem solving, reasoning, and how to learn), into the subject content of university courses.

“The foundation programme will benefit students from disadvantaged school backgrounds and, in future, those whose performance in proficiency tests points to the need for additional development in, for example, language proficiency, mathematical literacy, computer skills and life skills,” says Mr Marais.

Based on their level of achievement in the final Grade 12 examination (Senior Certificate), students will be referred to the foundation programme.

In order to improve students writing and reading abilities for higher education studies, foundation programme students will be offered academic language courses in English and Afrikaans.

Kovsie Counselling will render appropriate services, eg career guidance and support to these students.

The new foundation programme will be implemented in the faculties of Natural and Agricultural Sciences, Economic and Management Science, the Humanities and Law.

The duration for this programme differs from faculty to faculty. In the Faculty of Law it will take five years, while in the faculties of the Humanities, Natural and Agricultural Sciences, and Economic and Management Sciences it will take four years.

The national Department of Education will fund the foundation programme for three years. Funding for such programmes was made available to all higher education institutions in South Africa.

The welcoming function for all new first-year students and their parents will take place on Saturday 15 January 2005 at 11:00 in the Callie Human Centre on the main campus in Bloemfontein.

The registration of first-time entering first-year students who applied before 30 November 2004 to study at the Bloemfontein campus will take place from Monday 17 January 2005 to 21 January 2005 at the Callie Human Centre.

Senior undergraduate students (that is, students entering their second or later year of study) may register from 22 to 29 January 2005.

Postgraduate students, first time entering first year students and other students who applied for admission to the main campus after 30 November 2004 must register at the Callie Human from 31 January 2005 to 4 February 2005.

Due to the limitations placed by government on student numbers, the applications of students who applied late will be regarded as pending and will be processed as places become available.

    Media release
Issued by: Lacea Loader
Media Representative
Tel: (051) 401-2584
Cell: 083 645 2454
E-mail: loaderl.stg@mail.uovs.ac.za
13 January 2005

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept