Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

UFS receives research grant focusing on enablement of non-profit organisations
2011-01-20

 
Prof. Mabel Erasmus

The University of the Free State (UFS) has received a research grant to the value of R1,1 million from the National Research Foundation (NRF) to conduct research on community engagement, with the emphasis on knowledge as enablement – a Non-Profit Organisation (NPO) focus.

This was the first time the NRF had requested applications for research with a focus on community engagement (CE). With the grant, the UFS has become one of the first recipients of a research grant that focuses on community engagement.

The overarching research question that will be dealt with is how Higher Education Institutions (HEI) and the NPO sector can establish long-term, research-based collaborative engagements that will be mutually empowering and enabling through joint, reciprocal knowledge-based activities and capacity building.

The contention that this proposal is based on, is that HEIs have limited knowledge of the NPO sector and thus are unable to be fully responsive to the challenges that NPOs face. What is more, it is very likely that staff and students from HEIs do not have an adequate grasp of the experiential understanding, contextual community knowledge and practical know-how that NPO practitioners have, and hence do not appreciate the crucial contributions that they can make with regard to meaning-making processes aimed at improving some of the harsh South African realities.

According to Prof. Mabel Erasmus, Associate Professor and Head of the university’s Division: Service Learning, which submitted the research proposal to the NRF and is the grant-holder, the university would like the information generated by the research to be beneficial to both HEIs and the NPOs. “Knowledge regarding NPOs, specifically their challenges and information about what they are doing, will be invaluable to HEIs. At the same time, the research must benefit the NPOs with knowledge to improve their practice and strengthen their functioning.

“The research will take place in close collaboration with the NPOs, as their inputs are crucial. The research will thus not be ‘about’ them but ‘with’ them.”

“We do not want to send our students for community-based education or as volunteers to NPOs year after year and it does not mean as much to them as these organisations would hope for. With the research process we would like to strengthen NPOs, to build their capacity and give them our whole-hearted cooperation,” she said.

Funding received from the grant will be applied over a period of three years. Except for the study grants for five Ph.D. students and four master’s students, the grant will further make provision for a number of workshops, a local conference, a publication and presentations at international conferences on this matter. The research team of 22 persons includes academics from other HEIs such as the Central University of Technology, University of Zululand, University of Johannesburg and Monash SA. Several staff members of NPOs also form part of the team, including REACH (Bfn), Childline (FS) and others.

Prof. Erasmus said that the UFS was one of a few institutions that were currently conducting research to this extent on the link between the NPO sector and HEIs within the field of community engagement.
 

Media Release
18 January 2011
Issued by: Lacea Loader
Director: Strategic Communication (actg)
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept