Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

New projects will enhance the infrastructure on our campuses
2011-02-04

 
Illustration:
The university's Main Gate in Nelson Mandela Avenue, as designed by The Roodt Partnership Architects.
 

A new entrance to the Main Campus, a high-performance centre, commercial gymnasium, rock-climbing wall, memorial garden for women and a botanical garden are but a few of the number of building and renovation projects that will take place at the Main Campus of the University of the Free State (UFS) in Bloemfontein. A number of projects are also being done on the Qwaqwa Campus.
On the Main Campus the entrance in Nelson Mandela Avenue is being adapted to match the university’s new corporative identity which was introduced last week. This project will be completed at the end of March 2011,
 
The creation of an environment conducive to the development of its students in the field of teaching, learning and research, as well as sports and culture is one of the main reasons why the UFS is renovating existing buildings and developing new infrastructure.
 
With the construction of a high-performance centre and commercial gymnasium, the university wants to create a work environment for its staff that will not only contribute to the cultivation of maximum work performance, but also to staff wellness. The centre with its foyer and administrative offices will furthermore consist of a health desk, university sports institute, sports sales, a spinning and aerobic centre, and dressing rooms. The total area will extend over 2114 m² and the construction will take approximately 18 months. This development will take place on the western side of the university’s Main Campus, directly opposite the Furstenburg Gate and next to the new student housing.
 
The UFS is also progressing well with other building projects which commenced last year. One of the projects is a new Education Building which is being constructed opposite the UFS Sasol Library. Upon completion this building will be used for the training of maths and science teachers in the Foundation Phase. It will include three classrooms for 100 students each and an auditorium for 225 students as well as an office block. The auditorium will also be used as a classroom. The building has been designed according to environmentally friendly principles to save water and use power effectively. It should be completed this year.
 
Planning for the construction of more student accommodation on the Main Campus as well as the Qwaqwa Campus is already well underway. On the Qwaqwa Campus, a residence with 200 beds is being constructed. This also includes a computer laboratory. According to the planning, this residence should be completed by the end of the first semester in 2011. Furthermore, four residences will be constructed on the Main Campus. These residences are in the planning phase.
 
In order to place technology within reach of Kovsie students and thereby empowering them, computer laboratories were installed at the respective residences. The computer laboratories will eventually make provision for approximately185 computers for student use. Proper security is also planned to safeguard the equipment.
 
Work to a new building for the Faculty of Health Sciences is also proceeding rapidly on the site where the vehicle pool and Hertz were previously used. This will include a lecture hall for 200 students, five venues for 100 students each, as well as offices. Students from the School for Medicine and Occupational Therapy will make use of these facilities.
 
The new building for the Faculty of Economic and Management Sciences between the Flippie Groenewoud Building and the Wynand Mouton Theatre is also coming along nicely.
 
On the university’s Qwaqwa Campus a new Education building is being constructed. This building will include a lecturing hall with 100 seats, four 50-seat classrooms, six offices, ablution facilities, a biology and science laboratory, as well as an information technology laboratory for 60 students.
 
In the meantime, existing buildings are being renovated on all the campuses. This includes, amongst others, improvements to the Architecture Building, the Biotechnology Building and the quarters for service workers on the Main Campus. Other improvements that have already been completed include the renovation of the Odeion’s foyer and the Callie Human Centre.
 
In future, students, staff and visitors to the UFS can also look forward to a rock-climbing wall at the Student Centre on the Thakaneng Bridge, a memorial park for women, residential accommodation within a sports environment, and a botanical garden.

 

Media Release
03 February 2011
Issued by: Lacea Loader
Director: Strategic Communication (actg)
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept