Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

Breakfast in aid of hungry students
2011-06-01

Our university again proved that it cares for the welbeing of its students when a sum of money was presented to the No Student Hungry Project during a breakfast function.

The Centre for Health and Wellness at the UFS organised the event, not only to introduce the scheme to staff and individuals and thank those concerned for their contributions, but also to present the project organisers with a donation of R50 000. Mrs Grace Jansen, wife of Prof. Jonathan Jansen, Vice-Chancellor and Rector and Dr Carin Buys, wife of Mr Rudi Buys, Student Dean, started the project this year after a study found that 20% of students at the UFS have to study on an empty stomach and that this often leads to students leaving the UFS prematurely.

Ms Tanja Malherbe, mistress of ceremonies, said that the project is blessed because it developed from the founder members’ love for the students. The project currently provides 6 000 deserving students with a meal per day.

Prof. Jansen said that although the university encourage academic success, the UFS is also ready to show its mettle on a humanitarian level. “We don’t want students to only study together, but also to eat together.” He added that food can promote a feeling of fellowship, gives comfort and is also a symbol for caring. “It is bad to be hungry, no matter what the colour of your skin. Especially when other people have food and you don’t.”He concluded by saying that we are blessed by giving to other people, and by giving, we also receive.

Ms Tarryn Nell, also from the centre, supported him by comparing caring to candlelight. “It drives the darkness away, involves compassion and gives direction. When two people can get things to change, the rest will follow.” She encouraged the audience to share their warmth, time, knowledge and resources with other people.

During the event, a picture summary also referred to two recent projects the centre hosted. The first was a free medical screening test for staff members and the second a temporary remembrance rose garden, representing the five main causes of deaths in the country. These causes are HIV, ischemic heart disease, stroke, tuberculosis and interpersonal violence.

The proceeds from Prof. Jansen’s book “We need to talk,” will be donated to the project. Persons wishing to make a contribution, can make a payment to the following account: ABSA 157085 0071, reference number 146 674 604, account number 0198, branch code 632 005. Deposit slips can be sent to pelserr@ufs.ac.za. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept