Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

Diversity gains ground in SRC election
2005-08-19

 

The University of the Free State (UFS) reached another milestone in its transformation process last night (Tuesday 16 August 2005) when a more diverse group of students than ever before were elected to serve on the Main Campus SRC.  

In addition to this, the UFS experienced a smooth and problem-free election process – unlike recent years when the Main Campus SRC elections were frequently disrupted or marred by attempts of intimidation or obstruction.

The election took place on Monday 15 August 2005 and the results were announced last night (Tuesday 16 August 2005) by Dr Ezekiel Moraka, Vice-Rector:  Student Affairs at the UFS.

Seven black students are to serve on the Main Campus SRC, the highest number of black students ever to be elected on the Main Campus SRC since black students were admitted to the UFS in the late 1980’s. 

Nine of the 18 SRC members were directly elected and nine on the basis of proportional representation (PR).   The PR system was introduced after amendments to the constitution of the Main Campus SRC were approved by the UFS Council in June 2005. 

According to Dr Moraka the elections on the Main Campus were a resounding success.  “We received double the amount of votes this year: A total of 4 846 votes were cast, while 396 votes were spoilt.  Last year only 2 192 votes were cast,” said Dr Moraka.

Dr Moraka said that there were no disruptions of the process and no objections regarding the voting process were received.

Mr Graeme Bradley, thirdyear student in B Com Human Resource Management, was elected as SRC President of the Main Campus for 2005/2006.  Mr Bradley was SRC representative for Sports, Arts and Culture in 2004/2005.

In the PR section of the election, Here XVII (with 36,1% of  the vote) and Sasco (with 36% of the vote) received an equal amount of seats (3) for the SRC.  These percentages also provided them with fourteen (14) seats for the Student Parliament, which consists of 40 seats. 

“This outcome is significant to us as, for the first time we have a clear indication of what the actual support of these affiliated organisations is on campus,” said Dr Moraka.  


Media release

Issued by:  Lacea Loader
   Media Representative
   Tel:  (051) 401-2584
   Cell:  083 645 2454
   E-mail:  loaderl.stg@mail.uovs.ac.za

17 August 2005
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept