Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

New building for Centre for Financial Planning Law
2012-04-23

 

A graphic illustration of the new building for the Centre for Financial Planning Law.
19 April 2012

 

During a recent tree planting ceremony, the Centre for Financial Planning Law in the Faculty of Law officially handed over the site for a new building for the centre. The building should be complete by the end of 2012.

The Centre for Financial Planning Law’s present premises has become too small for the needs of the centre, thus a decision was taken to build a new building.

The centre, which was opened in 2001 with three staff members, grew during the past 11 years to a centre with 13 permanent staff members. Some 1 300 students – 120 undergraduate and 1 200 postgraduate students in the Postgraduate Diploma in Financial Planning Law and the Advanced Postgraduate Diploma in Financial Planning Law respectively – are enrolled at the centre. Undergraduate students attend weekly contact sessions while the postgraduate students all study electronically through distance education.

According to Mr Rudolf Bitzer of Bitzer Design Studio, one of the two architecture firms involved in the development of the building, the new building was planned in order to to make provision for future extensions. “The opportunity for the centre to function independently was important from the beginning and facilities had to be positioned in such a way that the lecture hall and committee room could be hired out commercially when lectures were not being presented.

“The building consists of a large reception venue, which gives access to a lecture hall (which can be subdivided), a committee room, public amenities and a reception counter. The centre will present about ten lectures annually in its own building and the lecture hall can accommodate 80 students. Exams will also be written in the venue,” said Mr Bitzer.

The usable inside area of the building totals 827 square metres.

The staff function in their own section of the building, with the offices arranged around a courtyard. Security access makes it a secure environment. In addition, staff have access to a staff room with a service hatch to the reception room, reception counter, personal assistant’s office, nine individual offices and a large open plan office, a storeroom, a cleaners’ room and facilities for staff.

“With the design, an attempt was made to make the building stand comfortably in the landscape without disappearing into the natural landscape. It is an unpretentious building, which seeks to provide well articulated architecture,” said Mr Bitzer.

The architecture firms involved are Bitzer Design Studio and Roodt Architects.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept