Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

Archbishop Emeritus Desmond Tutu visiting the UFS once again
2012-07-13

Archbishop Emeritus Desmond Tutu
13 July 2012

The University of the Free State (UFS) will once again be honoured by the presence of Archbishop Emeritus Desmond Tutu on Wednesday 18 July 2012.

Dr Tutu will be speaking at our Bloemfontein Campus for the first session of a two-day “In Conversation With …”event that is part of the Global Leadership Summit currently being held on the campus.

This sessions starts at 09:30 at the Centenary Complex. The media is invited to attend this session.

Dr Tutu will be in dialogue with Prof. Mark Solms, Head of the Department of Psychology at the University of Cape Town and owner of the Solms-Delta Wine Estate in Franschhoek.

The theme for this conversation, facilitated by Prof. Pumla Gobodo-Madikizela, will be “Living Reconciliation: Winds of Change in Franschhoek and Transformation at Solms-Delta Wine Estate”. This is based on the transformation introduced by Solms on his farm in the Franschhoek Valley.

Prof. Gobodo-Madikizela is a Senior Research Professor on trauma, forgiveness and reconciliation at the UFS.

As owner of Solms-Delta Wine Estate in Franschhoek, Prof. Solms led an initiative to transform the lives of farm workers on the estate through the Wijn de Caab Trust. This initiative was extended to empower the wider community of farm dwellers when Prof. Solms co-founded the Delta Trust and the Franschhoek Valley Transformation Charter. This organisation aims to break trans-generational cycles of social division and inequality in the valley.

The dialogue with Dr Tutu will highlight the significance of these initiatives as examples of deepening the link between socially responsive scholarship, commitment to social justice and responsible citizenship in contemporary South Africa.

Last year, the UFS awarded Dr Tutu an honorary doctorate in Theology, marking a milestone in the history of the university.

At 12:30, Dr Tutu will visit the Red Square in front of the UFS Main Building, where he will join in the fundraising festivities for the university’s official Nelson Mandela Day event and deliver a short address.

Schools in the vicinity, UFS staff and students and the public are invited to take part in the R5 coin laying ceremony in front of the Main Building.

The money collected at this event will be used to benefit the No Student Hungry (NSH) campaign as well as Bloemfontein Child Welfare.
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept