Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

UFS launches a Small and Medium Enterprise (SME) Observatory, first of its kind in South Africa
2013-12-04

In cooperation with its partners, the Centre for Development Support at the University of the Free State (UFS), launched the SME Observatory at a function on the Bloemfontein Campus. This initiative is the first of its kind in South Africa. 
 
According to Willem Ellis, Director of the Centre for Development Support, this is a public-private partnership between the UFS, the International Labour Organisation (ILO) and the Department of Economic Development, Tourism and Environmental Affairs (detea), which aims to gather information for research on small and medium enterprises. “With this research we will endeavour to empower policy formulators to make the right decisions in terms of development on a local, provincial and national level,” Ellis said. 
 
Presentations and the panel discussion at the launch covered topics such as: 
  • How many enterprises can survive in a town?
  • Are entrepreneurs being set up for failure? 
  • Is SMEs the answer to the unemployment question? 
  • The cost of red tape: is SMEs being tied down? 

To demonstrate the applicability of the enterprise architect for issues relating to enterprise policy, as well as entrepreneurship strategies, it was decided to focus the pilot phase of the observatory on towns in the Free State. Dr Daan Toerien, research associate at the Centre for Development Support, and Johannes Wessels, Project Manager of the SME Observatory, compiled the report: “50 Towns in the Free State: What the Enterprise Architecture of these towns is telling us about Entrepreneurial Space.” 
 
In his presentation at the launch, Dr Toerien said: “The Enterprise Observatory’s prime goal is to present valuable facts and insights about enterprises in the domains it is observing.” He has developed a database that contains information on a large number of South African towns. He said that studying the enterprise architecture of towns will contribute significantly to inform the policy and strategy debate on LED and enterprise development. “These activities will add valuable data and insights to approach entrepreneurship in the Free State and, after the pilot phase, also in other provinces in South Africa. The Free State government, district and local municipalities, and the consultant fraternity serving them, should find the SME observatory’s activities of value,” he said. 
 
Wessels said that the SME Observatory of South Africa is dedicated to base its arguments on sound theory, science and applied research; to engage policy and decision makers on an evidence-based approach; operate in a politically non-aligned mode in order to mirror truthfully the impact of policies and decisions and to partner with policy makers, entrepreneurs, public administration, think tanks, research institutions, business representatives and NGOs on building networks and alliances to promote an open and competitive enterprise environment.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept