Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

New multi-purpose residences open in January 2015
2014-06-18

The UFS is currently busy with exciting new accommodation developments on both the Bloemfontein and Qwaqwa Campuses.

This includes a new residence with a hotel and a conference/lecture hall on the western part of the Bloemfontein Campus and the building of another residence on the Qwaqwa Campus.

“We have done what was possible in our quest to maximise the number of beds available in the older residences on the Bloemfontein Campus,” says Quintin Koetaan, Senior Director: Housing and Residence Affairs at the UFS. “This we achieved by converting underutilised and unutilised dining halls and kitchens into bedrooms, which was totally insufficient to address the dire need for beds.”

“The new residence building will have different types of accommodation. I am very excited and look forward to the completion of this project. And this particular residence also brings a very exciting architectural design to the university environment.”

The residence, with multiple blocks for different accommodation, will be wheelchair friendly and numbering and signage will also be in braille. This futuristic-designed building will stand the test of time and will be provide student accommodation until 2030.The R60 million project is funded by the UFS and the Department of Higher Education and Training.

In step with international university accommodation trends – as with Yale's residential college system – this residence will house female first-years who will be mentored by postgraduate students. Postgraduates will be headhunted with the support of the Student Representative Council’s (SRC) postgraduate committee. These postgraduate students will represent all the faculties. Block A and B will accommodate 184 female first-years.

Each floor in this residence will have a study room, two lounges, a kitchen and a laundry for 25 students. Security will be very tight, with three levels of security: entrance to residence, corridor and individual bedroom door. There will also be perimeter camera surveillance and a security officer outside and inside the residence. 

 
Block C will accommodate postgraduate students. The ground floor will house eight single-bed roomed flats. The first floor will have 16 single rooms sharing a bathroom, kitchen and living room, as well as one double room with its own bathroom. The second floor will have 21 single rooms sharing a bathroom, kitchen and living room.

Block D will house 18 hotel-like en suites, with a dining room where breakfast will be served. The target market here will be visiting academics and other university-affiliated visitors. Prices will be competitive to those of local guesthouses and hotels.

Bookings have already opened. Guests will be able to book in and access the hotel desk 24/7. The dining room, accommodating up to 60 people, will not only be open for hotel guests, but also for postgraduate students and UFS staff. Bookings will therefore be essential.

The expansion of bed spaces also took place at the Qwaqwa Campus. In 2012 a 200-bed residence with a state of the art computer room was completed. As a follow-up to this development, another 248-bed residence is now being built. In this particular residence, there will be designated post-graduate accommodation for 48 students.

The project will be handed over at the end of October 2014, with the first intake planned for January 2015.

Another development at the Qwaqwa Campus is the Chancellor’s House Bed & Breakfast. This B&B, with its 5 en suite rooms, is open for business for all UFS staff.

 

For enquiries or bookings at this new accommodation facility, contact:

- Undergraduate (first-year ladies’ residence):
Monica Naidoo at +27(0)51 401 3455 or NaidooM@ufs.ac.za  

- Postgraduate:
Hein Badenhorst at +27(0)51 401 2602 or BadenH@ufs.ac.za  

- Hotel:
Ilze Nikolova at +27(0)51 401 9689 or NikolovaI@ufs.ac.za  

- Chancellor’s House Bed & Breakfast on Qwaqwa Campus:
Olga Molaudzi at +27(0)58 718 5030 or molaudziOD@qwa.ufs.ac.za

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept