Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

UFS research sheds light on service delivery protests in South Africa
2015-01-23

UFS research sheds light on service delivery protests in South Africa

Service delivery protests in the country have peaked during 2014, with 176 major service delivery protests staged against local government across South Africa.

A study by the University of the Free State (UFS) found that many of these protests are led by individuals who previously held key positions within the ANC and prominent community leaders. Many of these protests involved violence, and the destruction had a devastating impact on the communities involved.

This study was done by Dr Sethulego Matebesi, researcher and senior lecturer at the UFS. He focused his research on the dynamics of service delivery protests in South Africa.

Service delivery protests refer to the collective taken by a group of community members which are directed against a local municipality over poor or inadequate provision of basic services, and a wider spectrum of concerns including, for example, housing, infrastructural developments, and corruption.

These protests increased substantially from about 10 in 2004 to 111 in 2010, reaching unprecedented levels with 176 during 2014.

The causes of these protests are divided into three broad categories: systemic (maladministration, fraud, nepotism and corruption); structural (healthcare, poverty, unemployment and land issues); and governance (limited opportunities for civic participation, lack of accountability, weak leadership and the erosion of public confidence in leadership).

In his research, Dr Matebesi observed and studied protests in the Free State, Northern Cape and the North-West since 2008. He found that these protests can be divided into two groups, each with its own characteristics.

“On the one side you have highly fragmented residents’ groups that often use intimidation and violence in predominantly black communities. On the other side, there are highly structured ratepayers’ associations that primarily uses the withholding of municipal rates and taxes in predominantly white communities.”

 

Who are the typical protesters?

Dr Matebesi’s study results show that in most instances, protests in black areas are led by individuals who previously held key positions within the ANC - prominent community leaders. Generally, though, protests are supported by predominantly unemployed, young residents.

“However, judging by election results immediately after protests, the study revealed that the ANC is not losing votes over such actions.”

The study found that in the case of the structured ratepayers’ associations, the groups are led by different segments of the community, including professionals such as attorneys, accountants and even former municipal managers.

Dr Matebesi says that although many protests in black communities often turned out violent, protest leaders stated that they never planned to embark on violent protests.

“They claimed that is was often attitude (towards the protesters), reaction of the police and the lack of government’s interest in their grievances that sparked violence.”

Totally different to this is the form of peaceful protests that involves sanctioning. This requires restraint and coordination, which only a highly structured group can provide.

“The study demonstrates that the effects of service delivery protests have been tangible and visible in South Africa, with almost daily reports of violent confrontations with police, extensive damage to property, looting of businesses, and at times, the injuring or even killing of civilians. With the increase of violence, the space for building trust between the state and civil society is decreasing.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept