Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

From peasant to president; from Samora Machel to Cahora Bassa
2015-03-25

Prof Barbara Isaacman and Prof Allen Isaacman
Photo: Renè-Jean van der Berg

When the plane crashed in Mbuzini, the entire country was submerged in a profound grieving.

This is how Prof Allen Isaacman, Regents Professor of History at the University of Minnesota, described the effect President Samora Machel’s death in 1986 had on Mozambique. In a public lecture, Prof Isaacman spoke about the man, Samora Machel, and the influences that shaped Machel’s life. The event, recently hosted by the UFS International Studies Group on the Bloemfontein Campus, was part of the Stanley Trapido Seminar Programme.

Samora Machel: from peasant to president
Born in 1933 into a peasant family, Machel was allowed to advance only to the third grade in school. “And yet,” Prof Isaacman said, “he became a very prominent local peasant intellectual and ultimately one of the most significant critics of Portuguese colonialism and colonial capitalism.” Machel had a great sense of human agency and firmly believed that one is not a mere victim of circumstances. “You were born into a world, but you can change it,” Prof Isaacman explained Machel’s conviction.

From herding cattle in Chokwe, to working as male nurse, Machel went on to become the leader of the Liberation Front of Mozambique (Frelimo) and ultimately the president of his country. To this day, not only does he “capture the imagination of the Mozambican people and South Africans, but is considered one the great leaders of that moment in African history,” Prof Isaacman concluded his lecture.

Displacement, and the Delusion of Development: Cahora Bassa and Its Legacies in Mozambique, 1965–2007
Later in the day, Profs Allen and Barbara Isaacman discussed their book: ‘Displacement, and the Delusion of Development: Cahora Bassa and Its Legacies in Mozambique, 1965–2007’ at the Archives for Contemporary Affairs. As authors of the book, they investigate the history and legacies of one of Africa's largest dams, Cahora Bassa, which was built in Mozambique by the Portuguese in the late 1960s and early 1970s.

The dam was constructed under conditions of war and inaugurated after independence by a government led by Frelimo. The dam has since operated continuously, although, for many years, much of its electricity was not exported or used because armed rebels had destroyed many high voltage power line pillars. Since the end of the armed conflict in 1992, power lines have been rebuilt, and Cahora Bassa has provided electricity again, primarily to South Africa, though increasingly to the national Mozambican grid as well.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept