Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

From a dream to a reality: Free State Mother and Child Academic Hospital
2016-08-31

Description: Free State Mother and Child Academic Hospital  Tags: Free State Mother and Child Academic Hospital

The message, From a dream to a reality, echoed
throughout the launch of the Mother and
Child Academic Hospital. From left to right:
Dr Khotso Mokhele, Chancellor of the UFS,
Rolene Strauss, Miss World 2014 and
Patron of the Mother and Child Academic Hospital,
Prof André Venter, Head of the Department of
Paediatrics and Child Health, and Dr Riaan Els,
CEO of the Fuchs Foundation South Africa.
Photo: Charl Devenish

“Sometimes dreams do come true, and finally, this institution is starting to dream big dreams.” These were the words of Dr Khotso Mokhele, Chancellor of the University of the Free State (UFS) at the launch of the Free State Mother and Child Academic Hospital collaborative initiative. The launch was an official declaration of intentions regarding the establishing of the hospital, a specialist unit which will focus on paediatric and maternal healthcare, fully supported by the Department of Health in the Free State. As the first Mother and Child Hospital in South Africa, it will be unique.

Under the leadership of Prof André Venter, the UFS Department of Paediatrics and Child Health serves over 250 000 children of the southern regions of the Free State at secondary care level, and is responsible for the tertiary care of nearly one million children from the whole of the Free State and Northern Cape Provinces, as well as some children from Northwest and Eastern Cape Provinces and Lesotho.

As part of a multi-faceted initiative, the 350-bed mother and child hospital will benefit the community of the Free State greatly, and will support the objectives of the Strategic Development Goals. It will further Free State Strategic Transformation Plan (STP) by improving access to healthcare for the most vulnerable members of the population, thus reducing paediatric mortality and improving maternal health. An additional objective of the project is to develop academic excellence, and improve the environment in which medical specialists and subspecialists develop their skills according to international standards.

Prof Jonathan Jansen, Vice-chancellor and Rector of the UFS, described the project as one which captures the head and the heart, as it caters most for little lives, a hub wherein great talent and potential waits to be unleashed. In support of the project, the university has offered a piece of land on the campus where the hospital will be built, thus strengthening the quality of tertiary education.

Former Miss World, Mrs Rolene Strauss, also pledged her support. She said she is honoured to be the patron of the project, one she believes will lead to healthier women, healthier children, and a healthier nation.

In celebration of the 50th anniversary of the Fuchs Foundation, CEO Dr Riaan Els, awarded a donation of R2250000 towards the building of the hospital, a contribution which will bring the project a step closer to its realisation.

Prof André Venter, leader of the project, hopes that it will serve as a blueprint for other academic hospitals in the country, and mark the beginning of an era of highly specialised medical care for humanity’s most precious people.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept