Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

A year of various highlights for UFS
2016-12-19

Some other highlights:

Description: Prof Maryke Labuschagne, Bloemfontein Highlights Tags: Prof Maryke Labuschagne, Bloemfontein Highlights
The UFS was awarded five SARChI
(South African Research Chairs Initiative)
research chairs, the main goal of which is
to promote research excellence.
Read the full story


Description: Alumni Awards, Bloemfontein highlights Tags: Alumni Awards, Bloemfontein highlights

The UFS Chancellor’s Distinguished
Alumni Awards ceremony was held on
5 November 2016 on the
Bloemfontein Campus.
Read the full story


Description: Candice Thikeson, Bloemfontein Highlights Tags: Candice Thikeson, Bloemfontein Highlights

UFS student Candice Thikeson
completed a hat-trick of accolades when
she was named recipient of the Abe Bailey
Travel Bursary.

Read the full story

 

Description: Reitumetse Maloa, Bloemfontein Highlights Tags: Reitumetse Maloa, Bloemfontein Highlights

Reitumetse Maloa, a young researcher
at the UFS, is searching for a solution to
South Africa’s energy and electricity
problems from a rather unlikely
source: cow dung.

Read the full story


It was a year of various highlights for the University of the Free State (UFS) which has again illustrated the institution’s versatility by excelling on various fronts, from sports to research.

Some of these included Wayde van Niekerk winning a gold medal at the Olympic Games in Rio de Janeiro; research on the locomotion of the giraffe, and the awarding of honorary doctorates to people such as veteran journalist Max du Preez.

Van Niekerk breaks 400m world record

After his feat in Rio on 14 August 2016, Van Niekerk was described as “the next star” by former US sprinter Michael Johnson, whose 17-year-old 400m world record he broke in a time of 43,03. Johnson described the way in which the Kovsie outperformed the 400m field as “a massacre”.

Wayde van Niekerk was described as “the next star" by Michael Johnson, whose 17-year-old 400m world record he broke in a time of 43.03.


Max du Preez and Trevor Manuel honoured


Du Preez (Humanities) said he was excited about the young minds he had interacted with at the Winter Graduation ceremony of the UFS. The leading journalist and political analyst was one of four recipients of honorary doctorates from the university on June 30 2016. The others were Prof Joel Samoff (Humanities), former finance minister Trevor Manuel, and Dr Reuel Jethro Khoza (both Economic and Management Sciences.

Research of great value for conservation


Dr Francois Deacon, Department of Animal, Wildlife, and Grassland Sciences at the UFS, and Dr Chris Basu, a veterinarian at the Royal Veterinary College in the UK, conducted research on the manner in which giraffes locomote from one place to another.

Very little research has been done on the manner in which these animals move. The research will assist in understanding aspects such as the giraffe’s anatomy and function, as well as the energy it utilises in locomoting. Such information could help researchers understand where giraffes fit into the ecosystem and the data would be of great value for large-scale conservation efforts.

 

 

 

Read more on these highlights:

 

Wayde van Niekerk:

15 August 2016: Wayde the next big star, says Michael Johnson
20 September 2016: I don’t see myself as a star, says Wayde
27 October 2016: Wayde, Karla shine again at KovsieSport gala night
24 November 2016: Wayde keeps winning off the track

Honorary doctorates:

29 June 2016: UFS will award four honorary doctorates during Winter Graduation ceremonies
2 July 2016: Trevor Manuel and Max du Preez among the recipients of honorary doctorates at UFS graduation

Giraffe research:

9 March 2016: Giraffe research broadcast on National Geographic channel
23 August 2016: Research on locomotion of giraffes valuable for conservation of this species
18 November 2016: Studies to reveal correlation between terrain, energy use, and giraffe locomotion

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept