Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

PSP allows Dr Thom Wium to develop as an academic
2016-12-26

Description: Matildie PSP Tags: Matildie PSP 

For Dr Matildie Thom Wium, the
rewarding part of teaching is “the
moments of synergy with a group of
students” and when she senses that she
could, for instance, help them to better
understand a music selection.
Photo: Sonia Small

Being part of the Vice-Chancellor’s Prestige Scholars Programme (PSP) has opened doors for Dr Matildie Thom Wium. She is able to better plan her research, and the overseas trips she has to undertake for this helps to develop her skills.

The senior lecturer in the Odeion School of Music (OSM) at the University of the Free State (UFS) says these are some of the advantages the PSP holds for her.

She attended two international conferences this year – in London in January, and in New York in August. Furthermore, she is working on musical analysis with Prof Timothy Jackson at the University of North Texas, US from 12 September 2016 to 31 December 2016. Prof Jackson is a research professor and was one of her PhD promoters.

Conferences contribute to her vision
“I think the PSP is a fantastic initiative,” says Dr Thom Wium, whose husband Daniël Wium is a lecturer in Astrophysics at the UFS. She says the reseach support from the PSP is amazing. “In addition, the writing retreats offered by the PSP help to set time aside during the busy semester to work on articles.”

“I think the PSP is a fantastic initiative.”

The conference in London was on operatic practice in the 19th century. In the US, Dr Thom Wium, who has been working at the UFS since 2007, also participated in a panel discussion on this topic. “It means a lot for my vision as an academic to participate in conferences where I have the opportunity to meet and exchange thoughts with the people whose work I read and cite.”

Involvement in SA equally important

However, she believes that it is equally important to stay involved locally. At the conference of the South African Society for Research in Music, which was hosted by the OSM from 25 to 27 August 2016, she presented a paper on composer Arnold van Wyk and performed a song cycle by him. She did research on Van Wyk for her PhD.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept