Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

State of our campuses: UFS Qwaqwa Campus temporarily closed until 18 April 2017
2017-04-03

The senior leadership of the University of the Free State (UFS) has decided to close the Qwaqwa Campus on Tuesday 28 March 2017 due to student protests regarding provisional registrations. Academic activities will resume on 18 April 2017. 
 
The protests were preceded by a meeting of the campus management with the Student Representative Council (SRC) on 22 March 2017 to discuss issues pertaining to students who are provisionally registered – especially those students who are provisionally registered and awaiting the outcome of their appeals to the National Student Financial Aid Scheme (NSFAS).
 
On 27 March 2017, the SRC handed a memorandum to the campus management, requesting assistance in cases that are on appeal with NSFAS. The students also demanded extension of the provisional registration deadline of 31 March 2017, and that a fundraising plan should be implemented for financially needy students. The campus management made a commitment to respond within the deadline stipulated in the memorandum.
 
After the meeting, violence erupted when a group of students started intimidating students, barricading the entrance to the campus, and damaging university property. An interdict was served by the Sheriff later the same afternoon and additional security was deployed. On 28 March 2017, the violent protests and barricades spilled onto the provincial road to Phuthaditjhaba and several cars were damaged. This led to the arrest of a number of students by members of the South African Police Service for the contravention of the High Court order and for public violence. The students have since been released.
 
Due to the imminent threat to the safety of staff and students on the campus, the senior leadership decided on 28 March 2017 to evacuate the residences and to close the campus temporarily until 18 April 2017.
             
“It is unfortunate that the students resorted to violence without waiting for the campus management’s response to the memorandum of 27 March 2017. What makes the situation difficult is the fact that students on provisional registration who are waiting for the outcome of their NSFAS appeals, are dealing directly with NSFAS. This makes it difficult for the university to intervene,” says Mr Teboho Manchu, acting Principal of the Qwaqwa Campus.
 
The senior leadership of the UFS is aware of the video clip on social media this week, where a student is allegedly beaten by security guards on the Qwaqwa Campus. The senior leadership condemns this deplorable incident. An investigation is underway to determine the nature and cause of the incident. Appropriate steps will be taken once the outcome of the investigation is available.

Released by:
Lacea Loader (Director: Communication and Brand Management)
Telephone: +27 51 401 2584 | +27 83 645 2454
Email: news@ufs.ac.za | loaderl@ufs.ac.za
Fax: +27 51 444 6393


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept