Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

Boyden observatory celebrates its achievements
2004-10-05

The red carpet will be rolled out and champagne glasses filled tonight when the Boyden Observatory outside Bloemfontein will launch the first phase of the new science centre.

This phase, which was completed earlier this year, consists of a new auditorium, reception area and paths which connect educational visiting points on the Boyden terrain.

“Over the past two years the Boyden Observatory has been re-sited as a research, educational and public facility. The new facilities are now being utilised for educational and public programmes. The 1,5m Boyden telescope has also recently been upgraded and is used for research purposes,” says Dr Matie Hoffman from the University of the Free State’s (UFS) Department of Physics, who is responsible for the management of the centre.

“The Boyden Observatory is a unique facility of the UFS - we are one of the few universities in the world who has its own observatory,” says Dr Hoffman.

“The main purpose of the science centre is to create enthusiasm for science amongst the public. The centre also has a great educational function and focuses specifically on the improvement of the quality of science education in the Free State,” says Dr Hoffman.

Fund-raising for the planned second phase of the science centre, which will consist of interactive in- and outside exhibition areas, will also start tonight. “After the completion of the second phase the Boyden Observatory will probably become the most accessible and public-friendly observatory in the country and a great asset for the Free State Province,” says Dr Hoffman.

A small robotic telescope, which will be controlled from the University College Dublin in Ireland, will also be installed at the Boyden Observatory this year.

“Just as this year is a significant one for the UFS with its centenary celebrations, so it is also a significant one for the Boyden Observatory. The Harvard University in the United States of America started with the construction of the original 1,5 m telescope in its original form 100 years ago, the telescope was put in place at Boyden 70 years ago and Mr Uriah Boyden – the person who donated the money with which the Boyden Observatory was constructed, was born 200 years ago,” says Dr Hoffman.

The first phase of the science centre was built with funds sponsored by the AngloGold Fund, the Shuttleworth Foundation, the Charl van der Merwe Trust and the Lila Theron Trust. Donations from the Friends of Boyden Observatory and other individuals also contributed to the success of the project.

Those who are interested in educational tours of the science centre can contact Dr Hoffman at (051) 401-2322.

Media release
Issued by: Lacea Loader
Media Representative
Tel: (051) 401-2584
Cell: 083 645 2454
E-mail: loaderl.stg@mail.uovs.ac.za
5 October 2004

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept