Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

Power interruptions: Information for internal communication
2008-01-31

As part of the UFS’s commitment to address load shedding, the management would like to communicate the following:

The UFS mainly deals with the power interruptions by way of (a) the possible installation of equipment (e.g. generators) and (b) operational arrangements to ensure the functioning of the UFS in spite of power interruptions.

During the past week progress was made on both fronts. The information that follows resulted from a meeting of a task team of Physical Resources led by Mr Nico Janse van Rensburg, which took place on Monday 28 January (this task team naturally focuses on physical solutions) and a discussion by Exco on Wednesday 30 January 2008. Exco discussed the recommendations of the mentioned task team in respect of physical aspects, as well as the operational arrangements proposed by faculties.

Physical solutions

A Main Campus

1. New emergency power installations already approved:

Last week Exco gave its approval for the design and installation of emergency power equipment in all the large lecture-hall complexes to proceed immediately.

In all these cases

  • load surveys have been completed and a start has been made with the ordering of equipment and the process of appointing contractors. (Exco approved the adjustment of normal tender procedures in an attempt to expedite completion.)
  • generators with 20-30% more capacity than required for the current load are being ordered.
  • provision is being made for the connection of lights and at least one wall plug to the emergency power.
  • the expected construction time is 16 weeks (except in the case of the Flippie Groenewoud Building where it is 6 weeks).

The above-mentioned concerns lecture halls/ venues in the following buildings: Examination Centre, Flippie Groenewoud Building, Stabilis, Genmin and the Agriculture Building.

As far as the Agriculture Building is concerned, a larger generator (larger than required for lecture venues only) is being ordered in view of simultaneously providing essential research equipment (refrigerators, ovens, glasshouses) with emergency power within 16 weeks.

2. Investigation into the optimal utilisation of present emergency power installations

All the emergency power systems are being investigated on the basis of a list compiled in 2006 to determine whether excess capacity is available and whether it is possible to connect additional essential equipment or lights to it.

The electrical engineer warns as follows:
“Staff members must under no circumstances overload present emergency power points.

A typical example of this is a laboratory with 10 power points of which 2 points are emergency power outlets. Normally a fridge and freezer would, for example, be plugged into the two emergency power points, but now, with long load-shedding interruptions, a considerably larger number of appliances are being plugged into the power point by means of multi-sockets and extension cords. In the end the effect of such connections will accumulate at the emergency generator, which will then create a greater danger of it being overloaded and tripping, in other words, no emergency power will then be available.”

3. Requests and needs addressed directly to Physical Resources or reported to Exco via the line managers.

All the physical needs and requests addressed directly to Physical Resources or submitted to Exco via the line managers are being listed, classified and considered technically in view of their being discussed by the task team on Monday 11 February.
The information will (a) lead to recommendations to Exco regarding possible additional urgent emergency power installations, and (b) be used in the comprehensive investigation into the UFS’s preparedness for and management of long power interruptions.

Requests that can easily be complied with immediately and that fit into the general strategy will indeed be dealt with as soon as possible.

4. Purchase of loose-standing equipment: light, small, loose-standing generators, UPSs as solutions to/ aids during power interruptions

Exco approved that

a) faculties and support services accept responsibility themselves for the funding and purchase of loose equipment such as, for example battery lights, should they regard these as essential.
b) UPSs (uninterruptible power supplies) that faculties and support services wish to purchase to combat the detrimental effect of unexpected power interruptions on computer equipment) can (as at present) be purchased from own funds via Computer Services.
c) UPSs (uninterruptible power supplies) that faculties and support services wish to purchase to combat the detrimental effect of unexpected power interruptions on other types of equipment can normally be purchased from own funds with the consent of the line manager concerned.
Note: Please just make sure of the appropriateness of the equipment for a specific situation: it is not a power supply that can bridge a two-hour power interruption.)
d) small, loose-standing generators can be purchased from own funds via Physical Resources and installed under their supervision.
e) laptop computers can , where necessary, be purchased from own budgets. The availability of second-hand laptop computers must be taken into account.

B Vista

No major problems have been reported to date. The situation is being monitored and will be managed according to need. The same guidelines that apply to the Main Campus will naturally also apply to the Vista Campus.

C Qwaqwa

The situation is receiving attentions and solutions have already been found for most problems.

D General

1. All-inclusive project
A comprehensive investigation into the UFS’s preparedness for and management of long power interruptions will be launched as soon as possible. Available capacity will be utilised first to alleviate the immediate need. The needs assessment to which all faculties and support services have already contributed is already an important building block of the larger project.

2. Building and construction projects currently in the planning and implementation phase
The need for emergency power for projects such as the new Computer Laboratory is being investigated proactively and will be addressed in a suitable manner.

3. Liaison with Centlec
Attempts at direct and continuous liaison are continuing in an attempt to accommodate the unique needs of the UFS.

4. HESA meeting and liaison with other universities
A representative of the UFS will attend a meeting of all higher education institutions on 11 February. The meeting is being arranged by HESA (Higher Education South Africa) to discuss the implications for the sector, the management of risks and the sector’s response to government.

5. Internal communication
It is the intention to communicate internally after every meeting of the task team, which will take place on Mondays. Strategic Communication will assist in this regard.


 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept