Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

Power shortage: Measures to be implemented immediately
2008-01-31

1. In order to avoid the further implementation of power sharing, electricity companies countrywide are requiring, in addition to measures announced for domestic consumers, that major power consumers save a certain percentage of power.

2. Die UFS is one of the 100 largest clients of Centlec, the local electricity distribution company. During a meeting last Thursday evening with the 100 largest clients, it was indicated that the UFS had to deliver a saving of 10%. The details are as follows:

  • Provision is made to a certain extent for an increase in electricity consumption. The calculation is done as follows: maximum consumption for 2007+6%-10%.
  • This entails a saving during peak times, as well as a saving regarding the total number of units consumed.
  • The saving is calculated on a monthly basis.
  • Saving measures must be implemented immediately (from 7 March). If electricity-saving goals are not attained, power sharing will be resumed from 10 March.

3. The UFS has been controlling its peak demand by means of an energy control system for many years. The geysers of residences and certain central air-conditioning systems were linked to the control system in order to shift energy consumption to non-peak times.

4. In order to attain the goal of 10%, it is necessary to implement further energy control systems and additional measures – which requires time and money. Attention will have to be given, inter alia, to the following:

  • The 1000+ portable air-conditioning units on the campus (huge power guzzlers) must be connected to energy control appliances and systems.
  • All the filament bulbs must be replaced.

7. The UFS will be conducting high-level talks with Centlec later this week with a view to:

  • conveying the unique needs of the UFS in detail;
  • stating the impact of building and refurbishing projects that are currently in the implementation and planning phases;
  • requesting understanding for the fact that the UFS does not have the capacity to immediately deliver the 10% saving.
     

It is evident from discussions thus far that Centlec is sympathetic and wants to help, but also that immediate action and co-operation are expected from the UFS. During the meeting, the UFS must also report back on steps already taken (since 7 March) in this regard.

8. The installation of the emergency power units for the large lecture-hall complexes and a few other critical areas, which has already been approved, is continuing. About R3m is being spent on this. Additional emergency power needs reported to Physical Resources via line managers are currently being investigated with a view to obtaining a cost estimate and subsequently determining priorities in consultation with line managers.

It is recommended that:

a) All line managers, staff members and students be requested to give their full co-operation with regard to saving electricity in every possible way, and that current operational arrangements be amended if possible with a view to promoting power saving. 

Staff, students and other users of campus facilities be requested to see to it that lights and air conditioning (individual units) in unused areas are switched off.

b) The following measures drawn up in co-operation with electrical engineers come into effect immediately:

Arrangements to be made by Physical Resources staff:
(Additional capacity to be able to complete everything within a reasonable period of time will have to be found and funded. This aspect will be taken up with the line managers concerned):

  • The geysers of all office buildings will be switched off at the distribution board. Staff are requested to use a kettle for washing dishes, and are warned not to switch appliances on again themselves.
  • In all office buildings where 12V and 15W downlighters and uplighters remain switched on for decorative purposes and do not serve as primary illumination, the light switches will be disconnected.
  • Lighting in cloakrooms will be checked, and illumination levels will be reduced if possible.
  • All light armatures must be replaced by CFL types.
  • All lights on the grounds will be checked to ensure minimum power consumption.
  • The upper limit of all central cooling systems currently regulated via the energy control system must be set to 24 degrees.

Arrangements to be made by Kovsie Sport:

  • Sport activities requiring sports field illumination must be scheduled after 20:00 in the evening (the lights may not be on between 18:00 and 20:00.)
  • Sports field illumination must be managed so that such lights are not switched on unnecessarily.
     

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept