Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
05 September 2022 | Story Andrè Damons | Photo Andrè Damons
Prof Abdon Atangana
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS) and a highly cited mathematician for the years 2019-2021, says existing mathematical models are used to first fit collected data and then predict future events. It is for this reason he introduced a new concept that can be used to test whether the spread will have one or several waves.

With a new outbreak of the Ebola Virus Disease (EVD) reported this year in Democratic Republic of the Congo (DRC) – the 14th EVD outbreak in the country – researchers at the University of the Free State (UFS) introduced a new concept that can be used to test whether the spread will have one or several waves. They believe the focus should be to identify the source or the hosts of this virus for it to be a complete eradication. 

According to the Centers for Disease Control and Prevention (CDC), the Ministry of Health in the Democratic Republic of the Congo (DRC) declared an outbreak of Ebola in Mbandaka health zone, Equateur Province on April 23, 2022. EVD, formerly known as Ebola haemorrhagic fever, is a severe, often fatal illness affecting humans and other primates. The virus is transmitted to people from wild animals (such as fruit bats, porcupines and non-human primates) and then spreads in the human population through direct contact with the blood, secretions, organs or other bodily fluids of infected people, and with surfaces and materials (e.g. bedding, clothing) contaminated with these fluids, according to the World Health Organisation (WHO).
 
Prof Abdon Atangana, Professor of Applied Mathematics in the Institute for Groundwater Studies (IGS), says existing mathematical models are used to first fit collected data and then predict future events. Predictions help lawmakers to take decisions that will help protect their citizens and their environments. The outbreaks of COVID-19 and other infectious diseases have exposed the weakness of these models as they failed to predict the number of waves and in several instances; they failed to predict accurately day-to-day new infections, daily deaths and recoveries.

Solving the challenges of the current models

In the case of COVID-19 in South Africa, it is predicted that the country had far more infections than what was recorded, which is due to challenges faced by the medical facilities, poverty, inequality, and other factors. With Ebola in the DRC, data recorded are not far from reality due to the nature of the virus and its symptoms. However, the predictions show although some measures have been put in place in DRC and other places where the Ebola virus spread, they will still face some challenges in the future, as the virus will continue to spread but may have less impact. 

“To solve the challenges with the current models, we suggested a new methodology. We suggested that each class should be divided into two subclasses (Detected and undetected) and we also suggested that rates of infection, recovery, death and vaccination classes should be a function of time not constant as suggested previously. These rates are obtained from what we called daily indicator functions. For example, an infection rate should be obtained from recorded data with the addition of an uncertain function that represents non-recorded data (Here more work is still to be done to get a better approximation).

“I introduced a new concept called strength number that can be used to test whether the spread will have one or several waves. The strength number is an accelerative force that helps to provide speed changes, thus if this number is less than zero we have deceleration, meaning there will be a decline in the number of infections. If the number is positive, we have acceleration, meaning we will have an increase in numbers. If the number is zero, the current situation will remain the same,” according to Prof Atangana. 

To provide better prediction, he continues, reliable data are first fitted with the suggested mathematical model. This helps them to know if their mathematical model is replicating the dynamic process of the spread. The next step is to predict future events, to do this, we create three sub-daily indicator functions (minimum, actual, and maximum). These will lead to three systems, the first system represents the worst-case scenario, the second is the actual scenario, and the last is a best-case scenario.

Virus will continue to spread but with less impact

Using this method, Prof Atangana, a highly cited mathematician for the years 2019-2021, says he and Dr Seda Igret Araz, postdoctoral student, were able to predict that, although some measures have been put in place in DRC and other places where the Ebola virus spreads, they will still face some challenges in the future as the virus will continue to spread but may have less impact. 

To properly achieve the conversion from observed facts into mathematical formulations and to address these limitations, he had to ask fundamental questions such as what is the rate of infection, what is the strength of the infection, what are the crossover patterns presented by the spread, how can day-to-day new infected numbers be predicted and what differential operator should be used to model a dynamic process followed by the spread?

This approach was tested for several infectious diseases where we present the case of Ebola in Congo and Covid-19 in South Africa.  

News Archive

UFS Alumni honours four former Kovsies
2008-04-11

The University of the Free State (UFS) will honour four old Kovsies during the Kovsie Alumni Gala Awards dinner on Friday, 16 May 2008.

UFS Alumni chose Juan Smith as the 2007 Kovsie Alumnus of the Year. Dr Sherylle Calder, Dr Derick Coetzee and Prof. André Claassen will each receive the Kovsie Cum Laude Award. This award is made to honour UFS alumni for exceptional achievements and contributions to the UFS.

Juan Smith, member of the victorious World Cup Springbok team and captain of the 2007 Vodacom Free State Cheetahs Currie Cup winners, will receive the 2007 Kovsie Alumnus of the Year award. This award is made to a Kovsie alumnus for outstanding performance on national or international level. Smith made his Springbok debut in 2003 and has received much praise for his contribution to the side since then.

Dr Sherylle Calder and Dr Derick Coetzee will both receive the Kovsie Alumni Cum Laude Award. Both have played a key role in the preparation and conditioning of the Springbok team. Dr Calder has also been highly successful as part of the coaching unit for the English rugby team that won the World Cup in 2003, and the coaching team for the Australian cricket side. She is a pioneer in the field of visual awareness. Dr Coetzee has been the fitness conditioning expert for the Springbok team for the past four years. The success of the team in the World Cup is a testament to his achievements.

Prof. André Claassen will also be honoured with a Cum Laude Award for his contribution in the advancement of the Department of Otorhinolaryngology. He has many personal achievements in his discipline and has received several national and international awards, including one for the first cochlear implants in the Free State. The Cum Laude Award is given to an alumnus for outstanding service or achievement on local, national or international level in his/her field or discipline.

The Gala Awards dinner is a public event and will take place in the Reitz Hall of the Centenary Complex on the Main Campus in Bloemfontein. Microsoft is co-sponsor of the event. Those who are interested in attending can contact Ms Annanda Calitz at 051 401 3382 or alumni@fus.ac.za.

For information regarding the Kovsie Alumni Annual General Meeting, please contact Ms Annanda Calitz 051 401 3382 or Mr Lucas Radebe at 051 401 3751.

Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept