Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 September 2022 | Story NONSINDISO QWABE | Photo UFS Photo Gallery
UFS Qwaqwa Campus
The UFS Qwaqwa Campus.

Recent global happenings have challenged communities and humanity’s capability to solve immediate and major problems. Science has been one of the spaces in which the communities have looked for solutions regarding real threats to lives related to climate change, wars, as well as social and health pandemics. The Qwaqwa Campus will be showcasing Qwaqwa Campus research and scholarship at this year’s research conference, a two-day event which will be held in person, on 29-30 September 2022 at the Senate Hall on campus.

‘Scholarship, Innovation and Science: how can research be used as a tool for the betterment of society?’

Under this theme, the conference will be a space for intellectual debate and the processing of scholarship in innovation, said Prof Pearl Sithole, Vice-Principal: Academic and Research. “Some of the societal challenges have been urgent and pressing, yet some are slow dilemmas shattering the hope of generations for a better future. This conference will present the products of ‘disciplinary and scholarly crafts’, but it also seeks to explore whether science does (or should) have a strategic direction, and perhaps this is what the concept of innovation should entail. It will ponder on whether in the age-old binary between exploratory research and praxis there is a defeating taming of the entrepreneurial edge for the expanse of science in Africa,” she said.

Prof Sithole said the campus would also be launching its research strategy for 2022 to 2026.

Guest speakers include:

• Prof Percy Hlangothi is an Associate Professor of Physical and Polymer Chemistry at the Nelson Mandela University. He is also the inaugural Director of the Centre for Rubber Science and Technology, a research entity in the Faculty of Science at the same institution.

• Mr Lukhona Mnguni is a governance, politics, and development specialist and prolific political analyst specialising in Africa and international relations, as well as a PhD intern at the University of KwaZulu-Natal. He currently serves as the Head of Policy and Research at the Rivonia Circle. His work includes a current affairs analytical show on eNCA dubbed On the Spot with Lukhona Mnguni.

• Prof Dipane Hlalele is a Professor of Education and a C2 NRF-rated researcher. He is a highly rated scholar in inclusive education, critical pedagogy, and educational psychology at the University of KwaZulu-Natal. Prior to joining UKZN as an associate professor in 2017, he was an assistant dean and senior lecturer at the UFS, a college of education lecturer, and a high school deputy principal and teacher. 

To RSVP please click here on or before 19 September 2022.

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept