Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 September 2022 | Story NONSINDISO QWABE | Photo UFS Photo Gallery
UFS Qwaqwa Campus
The UFS Qwaqwa Campus.

Recent global happenings have challenged communities and humanity’s capability to solve immediate and major problems. Science has been one of the spaces in which the communities have looked for solutions regarding real threats to lives related to climate change, wars, as well as social and health pandemics. The Qwaqwa Campus will be showcasing Qwaqwa Campus research and scholarship at this year’s research conference, a two-day event which will be held in person, on 29-30 September 2022 at the Senate Hall on campus.

‘Scholarship, Innovation and Science: how can research be used as a tool for the betterment of society?’

Under this theme, the conference will be a space for intellectual debate and the processing of scholarship in innovation, said Prof Pearl Sithole, Vice-Principal: Academic and Research. “Some of the societal challenges have been urgent and pressing, yet some are slow dilemmas shattering the hope of generations for a better future. This conference will present the products of ‘disciplinary and scholarly crafts’, but it also seeks to explore whether science does (or should) have a strategic direction, and perhaps this is what the concept of innovation should entail. It will ponder on whether in the age-old binary between exploratory research and praxis there is a defeating taming of the entrepreneurial edge for the expanse of science in Africa,” she said.

Prof Sithole said the campus would also be launching its research strategy for 2022 to 2026.

Guest speakers include:

• Prof Percy Hlangothi is an Associate Professor of Physical and Polymer Chemistry at the Nelson Mandela University. He is also the inaugural Director of the Centre for Rubber Science and Technology, a research entity in the Faculty of Science at the same institution.

• Mr Lukhona Mnguni is a governance, politics, and development specialist and prolific political analyst specialising in Africa and international relations, as well as a PhD intern at the University of KwaZulu-Natal. He currently serves as the Head of Policy and Research at the Rivonia Circle. His work includes a current affairs analytical show on eNCA dubbed On the Spot with Lukhona Mnguni.

• Prof Dipane Hlalele is a Professor of Education and a C2 NRF-rated researcher. He is a highly rated scholar in inclusive education, critical pedagogy, and educational psychology at the University of KwaZulu-Natal. Prior to joining UKZN as an associate professor in 2017, he was an assistant dean and senior lecturer at the UFS, a college of education lecturer, and a high school deputy principal and teacher. 

To RSVP please click here on or before 19 September 2022.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept