Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 September 2022 | Story Nitha Ramnath and André Damons | Photo iStock
Energy efficiency and renewable energy is the game for South Africa to transition to a carbon-friendly economy by 2050.
Energy efficiency and renewable energy is the game for South Africa to transition to a carbon-friendly economy by 2050.

Energy efficiency and renewable energy is the game for South Africa to transition to a carbon-friendly economy by 2050. The energy mix by 2050 is focused on renewables and the long-term journey is very clear: we have to be renewable driven.

This is according to panellists speaking at the University of the Free State’s (UFS) third webinar in the 2022 Thought-Leader webinar series. The webinar titled, What needs to be done to POWER up South Africa? comprised panellists Matthew Mflathelwa, General Manager: Strategy and Planning at Eskom; Steve Nicholls, Head of Mitigation at South Africa’s Presidential Climate Commission (PCC); Happy Khambule, Environment and Energy Manager at Business Unity South Africa (BUSA); and Louis Lagrange, Head: Department of Engineering Sciences in the Faculty of Natural and Agricultural Sciences, UFS. 

We need to invest in new infrastructure

In his presentation, Mflathelwa talked about how Eskom can unlock additional grid capacity and how to start rolling out business models to enable this transition. 

“On the demand side, we are looking at some exciting and interesting initiatives. We are looking at how we can start to aggregate or leverage the idea of consumers becoming prosumers, and leverage technology to aggregate the potential supply and management demand from that perspective.” 

“The question is also how to do this sustainably in the long term. We need to invest a considerable amount of new infrastructure,” said Mflathelwa. 

According to him, it is not a secret that most of Eskom’s generating assets are approaching the end of life. The question now is how to proactively plan for this to ensure that we address the problem of load shedding sustainably. “The big takeaway is that there is a significant amount of new capacity that needs to be built and this is predominantly going to be renewables, but it is not the only additional infrastructure that is required. We need an energy mix that can respond and achieve adequacy for the future requirements.”  

Another important element that is often neglected is the transmission of grid infrastructure, given the penetration or entry of new players with greater penetration of renewable energy and the advantages that come with distributing these energy sources across the country. There is a lot of transmission and distribution infrastructure needed to enable this future capacity.

Some of the things also being discussed, said Mflathelwa, are how to enable greater and faster penetration of new capacity – specifically renewables to aid in the reduction of environmental challenges. 

LISTEN: 2022 UFS Thought-Leader Webinar:
What needs to be done to POWER up South Africa 
(Recorded on 27 September 2022)

 

The next decade is critical 

Nicholls gave a climate-friendly perspective on the work that Eskom is doing, saying energy transition in SA is core to the overall economy transition and getting a zero-carbon, least-cost energy system is fundamental to the strategy of the country. 

“We need to move from carbon emissions of around 480 megatons per annum today to somewhere between 350 and 420 by 2030, and then onto zero carbon emissions by 2050. If South Africa is to reach net-zero by 2050, we need targeted investment between now and 2030, setting the stage for accelerated investment in decarbonisation post 2030. The next decade is critical. Given the state of South Africa’s balance sheets, international support and foreign direct investment are critical.”

Nicholls said the energy mix by 2050 is really focused on renewables, and the long-term journey is very clear: we have to be renewable driven. The short- and long-term solutions are alike; renewables are cheaper, quicker to get onto the grid, pending some investment in the grid.   

“In the long term, we need big investments in renewables – about 6 GW a year between now and mid-2050. We need a big investment in the transmission grid. Hydrogen plays a critical role in decarbonisation of power and industry. Energy efficiency is key. It’s really the unsung hero in this conversation. If we can be energy efficient, we can take two power stations off the grid and that makes a big difference in terms of affordability.” 

“Transport is also important; if we are going to be a net-zero economy, we have to fully electrify the transport fleet, which puts an extra load on what Eskom needs to achieve,” Nicholls said. 

Energy efficiency is most critical

Khambule emphasized that the country needs to focus on using energy in an efficient manner in the commercial and household sectors, as energy efficiency is critical to the country’s power supply issues in the short term. According to Khambule, the country is not using energy in an efficient manner.

"If we are able to use power the minute it is necessary and become more efficient with it, we can get more value out of that power," said Khambule.

Lagrange concurred with Khambule on the importance of energy efficiency, referring to it as ‘the unsung hero’. “Energy efficiency is the biggest solution that we can have, and people need to be trained on how to use energy efficiently,” said Lagrange.

Khambule also addressed the issue of power cuts, saying the unpredictability thereof, even in the short-term, further exacerbated the situation.

"The unpredictability of load shedding has become much more of a driver for uncertainty, which leads to a lack of business confidence, and secondly leads to losses in production;  a key notion is that if we have predictability of load shedding, planning can be undertaken, and if planning is undertaken in a more judicious manner, then we are at least able to keep the losses at a minimum and see how we can weather the storm until a sustainable supply can be implemented."

Khambule also added that in the short and mid-term, solutions must consider protecting or mitigating options for vulnerable sectors. “In some industries – such as health care, power is essential and there is a need for predictable supply. Therefore, some sectors will require mitigating solutions to protect some essential sectors,” said Khambule.
According to Lagrange, no amazing technology for the generation and distribution of energy has been developed over the past decade. “We need to reimagine the entire current regulatory systems business model, because it is caught up in an energy stagnation, which is frighteningly fragile from a physical and cyber-security point of view,” added Lagrange.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept