Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 September 2022 | Story Nitha Ramnath and André Damons | Photo iStock
Energy efficiency and renewable energy is the game for South Africa to transition to a carbon-friendly economy by 2050.
Energy efficiency and renewable energy is the game for South Africa to transition to a carbon-friendly economy by 2050.

Energy efficiency and renewable energy is the game for South Africa to transition to a carbon-friendly economy by 2050. The energy mix by 2050 is focused on renewables and the long-term journey is very clear: we have to be renewable driven.

This is according to panellists speaking at the University of the Free State’s (UFS) third webinar in the 2022 Thought-Leader webinar series. The webinar titled, What needs to be done to POWER up South Africa? comprised panellists Matthew Mflathelwa, General Manager: Strategy and Planning at Eskom; Steve Nicholls, Head of Mitigation at South Africa’s Presidential Climate Commission (PCC); Happy Khambule, Environment and Energy Manager at Business Unity South Africa (BUSA); and Louis Lagrange, Head: Department of Engineering Sciences in the Faculty of Natural and Agricultural Sciences, UFS. 

We need to invest in new infrastructure

In his presentation, Mflathelwa talked about how Eskom can unlock additional grid capacity and how to start rolling out business models to enable this transition. 

“On the demand side, we are looking at some exciting and interesting initiatives. We are looking at how we can start to aggregate or leverage the idea of consumers becoming prosumers, and leverage technology to aggregate the potential supply and management demand from that perspective.” 

“The question is also how to do this sustainably in the long term. We need to invest a considerable amount of new infrastructure,” said Mflathelwa. 

According to him, it is not a secret that most of Eskom’s generating assets are approaching the end of life. The question now is how to proactively plan for this to ensure that we address the problem of load shedding sustainably. “The big takeaway is that there is a significant amount of new capacity that needs to be built and this is predominantly going to be renewables, but it is not the only additional infrastructure that is required. We need an energy mix that can respond and achieve adequacy for the future requirements.”  

Another important element that is often neglected is the transmission of grid infrastructure, given the penetration or entry of new players with greater penetration of renewable energy and the advantages that come with distributing these energy sources across the country. There is a lot of transmission and distribution infrastructure needed to enable this future capacity.

Some of the things also being discussed, said Mflathelwa, are how to enable greater and faster penetration of new capacity – specifically renewables to aid in the reduction of environmental challenges. 

LISTEN: 2022 UFS Thought-Leader Webinar:
What needs to be done to POWER up South Africa 
(Recorded on 27 September 2022)

 

The next decade is critical 

Nicholls gave a climate-friendly perspective on the work that Eskom is doing, saying energy transition in SA is core to the overall economy transition and getting a zero-carbon, least-cost energy system is fundamental to the strategy of the country. 

“We need to move from carbon emissions of around 480 megatons per annum today to somewhere between 350 and 420 by 2030, and then onto zero carbon emissions by 2050. If South Africa is to reach net-zero by 2050, we need targeted investment between now and 2030, setting the stage for accelerated investment in decarbonisation post 2030. The next decade is critical. Given the state of South Africa’s balance sheets, international support and foreign direct investment are critical.”

Nicholls said the energy mix by 2050 is really focused on renewables, and the long-term journey is very clear: we have to be renewable driven. The short- and long-term solutions are alike; renewables are cheaper, quicker to get onto the grid, pending some investment in the grid.   

“In the long term, we need big investments in renewables – about 6 GW a year between now and mid-2050. We need a big investment in the transmission grid. Hydrogen plays a critical role in decarbonisation of power and industry. Energy efficiency is key. It’s really the unsung hero in this conversation. If we can be energy efficient, we can take two power stations off the grid and that makes a big difference in terms of affordability.” 

“Transport is also important; if we are going to be a net-zero economy, we have to fully electrify the transport fleet, which puts an extra load on what Eskom needs to achieve,” Nicholls said. 

Energy efficiency is most critical

Khambule emphasized that the country needs to focus on using energy in an efficient manner in the commercial and household sectors, as energy efficiency is critical to the country’s power supply issues in the short term. According to Khambule, the country is not using energy in an efficient manner.

"If we are able to use power the minute it is necessary and become more efficient with it, we can get more value out of that power," said Khambule.

Lagrange concurred with Khambule on the importance of energy efficiency, referring to it as ‘the unsung hero’. “Energy efficiency is the biggest solution that we can have, and people need to be trained on how to use energy efficiently,” said Lagrange.

Khambule also addressed the issue of power cuts, saying the unpredictability thereof, even in the short-term, further exacerbated the situation.

"The unpredictability of load shedding has become much more of a driver for uncertainty, which leads to a lack of business confidence, and secondly leads to losses in production;  a key notion is that if we have predictability of load shedding, planning can be undertaken, and if planning is undertaken in a more judicious manner, then we are at least able to keep the losses at a minimum and see how we can weather the storm until a sustainable supply can be implemented."

Khambule also added that in the short and mid-term, solutions must consider protecting or mitigating options for vulnerable sectors. “In some industries – such as health care, power is essential and there is a need for predictable supply. Therefore, some sectors will require mitigating solutions to protect some essential sectors,” said Khambule.
According to Lagrange, no amazing technology for the generation and distribution of energy has been developed over the past decade. “We need to reimagine the entire current regulatory systems business model, because it is caught up in an energy stagnation, which is frighteningly fragile from a physical and cyber-security point of view,” added Lagrange.

News Archive

UFS involved in project to light up the townships
2006-06-06

The parties involved with the project are from the left: Prof Hendrik Swart (Departmental Chairperson of the UFS Department of Physics), Dr Thembela Hillie (CSIR), Prof Neerich Revaprasadu (Department of Chemistry at the University of Zululand) and Dr Wynand Steyn (CSIR).

UFS involved in project that could light up the townships   

The University of the Free State’s (UFS) Department of Physics is involved with a project that could make life easier in the townships through the use of artificial light.

“The project is based on the use of sunlight to activate nano material in for example cement and paint during the day. At night the cement or paint can then radiate light,” said Prof Hendrik Swart, Departmental Chairperson of the UFS Department of Physics.

According to Prof Swart an amount of R3,9 million has been made available by the Council for Scientific and Industrial Research (CSIR) for the further development of the project.   

Prof Swart visited the University of Florida in America in 1995 for a year where he researched luminescent phosphor material that is suitable for flat panel television screens.  The red, green and blue spots on the television screens originate from these kinds of phosphor materials.  “At that stage plasma television screens were only a dream.  Today it is sold everywhere,” said Prof Swart. 

“Upon my return I started a research group at the UFS which investigated the degrading of phosphor material.  We also started to concentrate on the effectiveness of nano phosphors.  In the mean time our cooperation with the Americans was strengthened with follow-up visits to America of my colleagues, Prof Koos Terblans and Mr Martin Ntwaeaborwa,” said Prof Swart.

“Nano phosphors are basically luminescent powders that consist of particles that are 1 millionth of a millimetre.  These particles can provide light as soon as they are illuminated with, for instance, sunlight.  The amount of time these particles can provide light, is determined by the impurities in the material,” said Prof Swart.

According to Prof Swart nano particles are developed and linked to infrastructure materials in order for these materials to be excited during the day by sunlight and then it emits light during night time.

“The nano material is of such a nature that it can be mixed with materials, such as paint or cement. The yellow lines of roads can for example emit light in a natural way during night time,” said Prof Swart.

About a year ago Prof Swart and Dr Thembela Hillie, a former Ph D-student of the UFS Department of Physics, had discussions with Prof Neerich Revaprasadu from the University of Zululand and the CSIR about the possibility of mixing these nano phosphor particles with other materials that can be used as light sources in the building of roads and houses.

“Prof Revaprasadu is also actively involved in the research of nano materials.  Our efforts resulted in the CSIR approving the further extension of the project,” said Prof Swart.   

“The UFS and the University of Zululand are currently busy investigating ways to extend the light emitting time,” said Prof Swart.  

“There are eight M Sc and Ph D-students from the UFS and about five students from the University of Zululand working on this research project.  The Department of Physics at the Qwaqwa Campus of the UFS, with Francis Dejene as subject head, is also involved with the project,” said Prof Swart.

According to Prof Swart the further applications of nano materials are unlimited.  “Children whose parents cannot afford electricity can for instance leave any object such as a lamp, that is covered with these phosphor particles, in the sun during the day and use it at night as a light for study purposes,” said Prof Swart.

According to Prof Swart the further extension of the project will take about two years.  “During this time we want to determine how the effectiveness of the phosphors can be increased.  Discussions with the government and other role players for the possible implementation of the project are also part of our planning,” said Prof Swart.


Media release
Issued by: Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
6 June 2006

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept