Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 September 2022 | Story Nitha Ramnath and André Damons | Photo iStock
Energy efficiency and renewable energy is the game for South Africa to transition to a carbon-friendly economy by 2050.
Energy efficiency and renewable energy is the game for South Africa to transition to a carbon-friendly economy by 2050.

Energy efficiency and renewable energy is the game for South Africa to transition to a carbon-friendly economy by 2050. The energy mix by 2050 is focused on renewables and the long-term journey is very clear: we have to be renewable driven.

This is according to panellists speaking at the University of the Free State’s (UFS) third webinar in the 2022 Thought-Leader webinar series. The webinar titled, What needs to be done to POWER up South Africa? comprised panellists Matthew Mflathelwa, General Manager: Strategy and Planning at Eskom; Steve Nicholls, Head of Mitigation at South Africa’s Presidential Climate Commission (PCC); Happy Khambule, Environment and Energy Manager at Business Unity South Africa (BUSA); and Louis Lagrange, Head: Department of Engineering Sciences in the Faculty of Natural and Agricultural Sciences, UFS. 

We need to invest in new infrastructure

In his presentation, Mflathelwa talked about how Eskom can unlock additional grid capacity and how to start rolling out business models to enable this transition. 

“On the demand side, we are looking at some exciting and interesting initiatives. We are looking at how we can start to aggregate or leverage the idea of consumers becoming prosumers, and leverage technology to aggregate the potential supply and management demand from that perspective.” 

“The question is also how to do this sustainably in the long term. We need to invest a considerable amount of new infrastructure,” said Mflathelwa. 

According to him, it is not a secret that most of Eskom’s generating assets are approaching the end of life. The question now is how to proactively plan for this to ensure that we address the problem of load shedding sustainably. “The big takeaway is that there is a significant amount of new capacity that needs to be built and this is predominantly going to be renewables, but it is not the only additional infrastructure that is required. We need an energy mix that can respond and achieve adequacy for the future requirements.”  

Another important element that is often neglected is the transmission of grid infrastructure, given the penetration or entry of new players with greater penetration of renewable energy and the advantages that come with distributing these energy sources across the country. There is a lot of transmission and distribution infrastructure needed to enable this future capacity.

Some of the things also being discussed, said Mflathelwa, are how to enable greater and faster penetration of new capacity – specifically renewables to aid in the reduction of environmental challenges. 

LISTEN: 2022 UFS Thought-Leader Webinar:
What needs to be done to POWER up South Africa 
(Recorded on 27 September 2022)

 

The next decade is critical 

Nicholls gave a climate-friendly perspective on the work that Eskom is doing, saying energy transition in SA is core to the overall economy transition and getting a zero-carbon, least-cost energy system is fundamental to the strategy of the country. 

“We need to move from carbon emissions of around 480 megatons per annum today to somewhere between 350 and 420 by 2030, and then onto zero carbon emissions by 2050. If South Africa is to reach net-zero by 2050, we need targeted investment between now and 2030, setting the stage for accelerated investment in decarbonisation post 2030. The next decade is critical. Given the state of South Africa’s balance sheets, international support and foreign direct investment are critical.”

Nicholls said the energy mix by 2050 is really focused on renewables, and the long-term journey is very clear: we have to be renewable driven. The short- and long-term solutions are alike; renewables are cheaper, quicker to get onto the grid, pending some investment in the grid.   

“In the long term, we need big investments in renewables – about 6 GW a year between now and mid-2050. We need a big investment in the transmission grid. Hydrogen plays a critical role in decarbonisation of power and industry. Energy efficiency is key. It’s really the unsung hero in this conversation. If we can be energy efficient, we can take two power stations off the grid and that makes a big difference in terms of affordability.” 

“Transport is also important; if we are going to be a net-zero economy, we have to fully electrify the transport fleet, which puts an extra load on what Eskom needs to achieve,” Nicholls said. 

Energy efficiency is most critical

Khambule emphasized that the country needs to focus on using energy in an efficient manner in the commercial and household sectors, as energy efficiency is critical to the country’s power supply issues in the short term. According to Khambule, the country is not using energy in an efficient manner.

"If we are able to use power the minute it is necessary and become more efficient with it, we can get more value out of that power," said Khambule.

Lagrange concurred with Khambule on the importance of energy efficiency, referring to it as ‘the unsung hero’. “Energy efficiency is the biggest solution that we can have, and people need to be trained on how to use energy efficiently,” said Lagrange.

Khambule also addressed the issue of power cuts, saying the unpredictability thereof, even in the short-term, further exacerbated the situation.

"The unpredictability of load shedding has become much more of a driver for uncertainty, which leads to a lack of business confidence, and secondly leads to losses in production;  a key notion is that if we have predictability of load shedding, planning can be undertaken, and if planning is undertaken in a more judicious manner, then we are at least able to keep the losses at a minimum and see how we can weather the storm until a sustainable supply can be implemented."

Khambule also added that in the short and mid-term, solutions must consider protecting or mitigating options for vulnerable sectors. “In some industries – such as health care, power is essential and there is a need for predictable supply. Therefore, some sectors will require mitigating solutions to protect some essential sectors,” said Khambule.
According to Lagrange, no amazing technology for the generation and distribution of energy has been developed over the past decade. “We need to reimagine the entire current regulatory systems business model, because it is caught up in an energy stagnation, which is frighteningly fragile from a physical and cyber-security point of view,” added Lagrange.

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept