Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
29 September 2022 | Story Nitha Ramnath and André Damons | Photo iStock
Energy efficiency and renewable energy is the game for South Africa to transition to a carbon-friendly economy by 2050.
Energy efficiency and renewable energy is the game for South Africa to transition to a carbon-friendly economy by 2050.

Energy efficiency and renewable energy is the game for South Africa to transition to a carbon-friendly economy by 2050. The energy mix by 2050 is focused on renewables and the long-term journey is very clear: we have to be renewable driven.

This is according to panellists speaking at the University of the Free State’s (UFS) third webinar in the 2022 Thought-Leader webinar series. The webinar titled, What needs to be done to POWER up South Africa? comprised panellists Matthew Mflathelwa, General Manager: Strategy and Planning at Eskom; Steve Nicholls, Head of Mitigation at South Africa’s Presidential Climate Commission (PCC); Happy Khambule, Environment and Energy Manager at Business Unity South Africa (BUSA); and Louis Lagrange, Head: Department of Engineering Sciences in the Faculty of Natural and Agricultural Sciences, UFS. 

We need to invest in new infrastructure

In his presentation, Mflathelwa talked about how Eskom can unlock additional grid capacity and how to start rolling out business models to enable this transition. 

“On the demand side, we are looking at some exciting and interesting initiatives. We are looking at how we can start to aggregate or leverage the idea of consumers becoming prosumers, and leverage technology to aggregate the potential supply and management demand from that perspective.” 

“The question is also how to do this sustainably in the long term. We need to invest a considerable amount of new infrastructure,” said Mflathelwa. 

According to him, it is not a secret that most of Eskom’s generating assets are approaching the end of life. The question now is how to proactively plan for this to ensure that we address the problem of load shedding sustainably. “The big takeaway is that there is a significant amount of new capacity that needs to be built and this is predominantly going to be renewables, but it is not the only additional infrastructure that is required. We need an energy mix that can respond and achieve adequacy for the future requirements.”  

Another important element that is often neglected is the transmission of grid infrastructure, given the penetration or entry of new players with greater penetration of renewable energy and the advantages that come with distributing these energy sources across the country. There is a lot of transmission and distribution infrastructure needed to enable this future capacity.

Some of the things also being discussed, said Mflathelwa, are how to enable greater and faster penetration of new capacity – specifically renewables to aid in the reduction of environmental challenges. 

LISTEN: 2022 UFS Thought-Leader Webinar:
What needs to be done to POWER up South Africa 
(Recorded on 27 September 2022)

 

The next decade is critical 

Nicholls gave a climate-friendly perspective on the work that Eskom is doing, saying energy transition in SA is core to the overall economy transition and getting a zero-carbon, least-cost energy system is fundamental to the strategy of the country. 

“We need to move from carbon emissions of around 480 megatons per annum today to somewhere between 350 and 420 by 2030, and then onto zero carbon emissions by 2050. If South Africa is to reach net-zero by 2050, we need targeted investment between now and 2030, setting the stage for accelerated investment in decarbonisation post 2030. The next decade is critical. Given the state of South Africa’s balance sheets, international support and foreign direct investment are critical.”

Nicholls said the energy mix by 2050 is really focused on renewables, and the long-term journey is very clear: we have to be renewable driven. The short- and long-term solutions are alike; renewables are cheaper, quicker to get onto the grid, pending some investment in the grid.   

“In the long term, we need big investments in renewables – about 6 GW a year between now and mid-2050. We need a big investment in the transmission grid. Hydrogen plays a critical role in decarbonisation of power and industry. Energy efficiency is key. It’s really the unsung hero in this conversation. If we can be energy efficient, we can take two power stations off the grid and that makes a big difference in terms of affordability.” 

“Transport is also important; if we are going to be a net-zero economy, we have to fully electrify the transport fleet, which puts an extra load on what Eskom needs to achieve,” Nicholls said. 

Energy efficiency is most critical

Khambule emphasized that the country needs to focus on using energy in an efficient manner in the commercial and household sectors, as energy efficiency is critical to the country’s power supply issues in the short term. According to Khambule, the country is not using energy in an efficient manner.

"If we are able to use power the minute it is necessary and become more efficient with it, we can get more value out of that power," said Khambule.

Lagrange concurred with Khambule on the importance of energy efficiency, referring to it as ‘the unsung hero’. “Energy efficiency is the biggest solution that we can have, and people need to be trained on how to use energy efficiently,” said Lagrange.

Khambule also addressed the issue of power cuts, saying the unpredictability thereof, even in the short-term, further exacerbated the situation.

"The unpredictability of load shedding has become much more of a driver for uncertainty, which leads to a lack of business confidence, and secondly leads to losses in production;  a key notion is that if we have predictability of load shedding, planning can be undertaken, and if planning is undertaken in a more judicious manner, then we are at least able to keep the losses at a minimum and see how we can weather the storm until a sustainable supply can be implemented."

Khambule also added that in the short and mid-term, solutions must consider protecting or mitigating options for vulnerable sectors. “In some industries – such as health care, power is essential and there is a need for predictable supply. Therefore, some sectors will require mitigating solutions to protect some essential sectors,” said Khambule.
According to Lagrange, no amazing technology for the generation and distribution of energy has been developed over the past decade. “We need to reimagine the entire current regulatory systems business model, because it is caught up in an energy stagnation, which is frighteningly fragile from a physical and cyber-security point of view,” added Lagrange.

News Archive

Plant eco-physiologist finds effective solutions for crop optimisation
2016-07-24

Description: Orange trees Tags: Orange trees

The bio-stimulant was tested on
this citrus. This is the first time
that the product has been tested
on a crop.

In a time characterised by society facing increasing population growth, food crises, and extreme climatic conditions such as drought, it is essential for farmers to integrate science with their work practices in order to optimise crops.

Role of photosynthesis and plant sap data

By knowing how to use photosynthesis and plant sap data for determining plant health, fast and effective solutions could be established for the optimisation of crops. This technique, which could help farmers utilise every bit of usable land effectively, is the focus of Marguerite Westcott’s PhD study. She is a junior lecturer and plant eco-physiologist in die Department of Plant Sciences at the University of the Free State.

Westcott uses this technique in her studies to prove that a newly-developed bio-stimulant stimulates plants in order to metabolise water and other nutrients better, yielding increased crops as a result.

Agricultural and mining sectors benefit from research

The greatest part of these projects focuses on the agricultural sector. Westcott and a colleague, Dr Gert Marais, are researching the physiology of pecan and citrus trees in order to optimise the growth of these crops, thus minimising disease through biological methods. Field trials are being conducted in actively-producing orchards in the Hartswater and Patensie areas in conjunction with the South African Pecan Nut Producers Association (SAPPA) amongst others.
 
The principles that Westcott applies in her research are also used in combination with the bio-stimulant in other studies on disturbed soil, such as mine-dump material, for establishing plants in areas where they would not grow normally. This is an economical way for both the agricultural and mining sectors to improve nutrient absorption, stimulate growth, and contribute to the sustainable utilisation of the soil.

Description: Pecan nut orchards  Tags: Pecan nut orchards

The bio-stimulant contributes to the immunity of the plants.
It was tested in these pecan nut orchards (Hartswater).

Soil rehabilitation key aspect in research projects

“One of two things is happening in my research projects. Either the soil is rehabilitated to bring about the optimal growth of a plant, or the plants are used to rehabilitate the soil,” says Westcott.

Data surveys for her PhD studies began in 2015. “This will be a long-term project in which seasonal data will be collected continuously. The first set of complete field data, together with pot trial data, will be completed after the current crop harvest,” says Westcott.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept