Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 September 2022 | Story Leonie Bolleurs | Photo Johané Odendaal and Edward Lee
UFS Solar car
Team UFS entered the Sasol Solar Challenge for the very first time this year, competing with seven other teams and showcasing their technological input and innovation.

Excitement. Nervousness. A thousand thoughts going through our minds, but primarily “Are we really ready for the challenges that lie ahead?” and “What did we get ourselves into?” In the moments leading up to this year’s Sasol Solar Challenge, these were the thoughts and emotions of Team UFS, who entered their solar car, Lengau.

“But I had confidence in the team,” says Dr Hendrik van Heerden from the UFS Department of Physics at the University of the Free State (UFS) and project manager of Team UFS who entered the challenge for the very first time this year.

Testing perseverance

Entering the Sasol Solar Challenge – a biennial competition that has been running since 2008 – Team UFS competed against seven other teams (representing local and international universities, high schools, and engineering teams), sharing the public roads of South Africa with trucks and regular traffic, sometimes experiencing steep mountain climbs, testing not only their technological input and innovation, but also their perseverance over an eight-day period. 

“One of our main challenges was the long time on the road, to which the heavy weight of the solar car, efficiency of the solar panels, and the effective charging of the battery contributed,” says Dr Van Heerden, stating that these problems were difficult to tackle with the small budget they had. “We, however, stayed positive and was determined to pull through.” 

“We were also open for learning from the other teams, the scrutineers, and observers regarding the mechanical, electrical, and body of competing solar cars. Thus, building knowledge and collaborating is a success we celebrate,” he adds.

In the end it paid off, as Team UFS completed the race, covering a distance of more than 500 km and ending in seventh place overall. The team that finished with the greatest distance covered within the allotted time won the challenge, in this instance the Brunel Solar Team, covering 4 228,2 km.

Dr Van Heerden believes that they did exceptionally well for a debut team, proving themselves against the best. “I am of the opinion that this challenge made us stronger and gave each of us a new perspective on how we should approach life,” he adds.

“As we are all enthusiastic about science and engineering, this challenge inspired us to build towards a future where renewable energy could be an important source of energy in South Africa.”
For a debut team, we did exceptionally well, proving ourselves against the best. – Dr Hendrik van Heerden.

Learning the ropes

The teams left Carnival City in Johannesburg on 9 September 2022 and arrived at the finish line at the V&A Waterfront in Cape Town on Friday 16 September 2022.

Talking about the next race, Dr Van Heerden says he wants to build a better, more effective solar car. “We strive to continuously improve the design, technology, and science going into our car,” he says. 

“For this challenge, we were interested in learning about the mechanical, electrical, and overall body of a solar car. Hence, our solar vehicle was designed well enough to participate and reliable enough to succeed.”

According to him, their focus will shift to competing against the other teams for the next Sasol Solar Challenge. “We will also be more prepared, since we now know what to expect from the challenge. It was our first time participating in the Sasol Solar Challenge, and we’ve learnt so much from the past two weeks – we will carry that forward to the next challenge.

 

News Archive

Afromontane Research Unit makes climate change inroads
2017-10-28



Description: Prof Mukwada Tags: Prof Mukwada

Prof Geofrey Mukwada

The Afromontane Research Unit (ARU) has recently made inroads in climate-change research. This has been achieved through work published by Professor Geofrey Mukwada and Professor Desmond Manatsa, whose research could make it possible to predict El Nino Southern Oscillation (ENSO) several months before its occurrence. 

Professor Manatsa is an ARU postdoctoral fellow currently collaborating with Professor Mukwada on an ongoing climate-change research project. The two experts noted that ENSO is one of the most important climate phenomena on earth, due to its ability to change the global atmospheric circulation, which in turn, influences temperature and precipitation across the world.

Climate change scientific breakthrough

“This is a tremendous breakthrough, because humanity as a whole has been looking for answers regarding the origins of climate-related hazards which are worsening, yet becoming more frequent and difficult to predict. In some cases, floods and droughts occur in the same season, and within the same geographical area. These extreme climate events are becoming more frequent, often leading to loss of life and threatening national economies and livelihoods,” said Professor Mukwada, coordinator of the ARU sub-theme on Living and Doing Business In Afromontane Environments.

During an interview with the Southern Times, Professor Manatsa revealed that the El Nino Southern Oscillation (ENSO) is initiated and sustained in the tropical Pacific, a fact that has eluded climate scientists for years. “It was an unresolved puzzle which limited the successful prediction of ENSO events with reasonable lead time. Climate scientists were only able to know with some degree of certainty that the event would occur once it had started, just a few months before its impacts were felt,” Professor Manatsa said.

Prof Manatsa is upbeat that a lot of headway has now been made towards unravelling the mystery of ENSO’s origin. “The necessity of the inclusion of the solar energy changes due to ozone alterations in the upper atmosphere should significantly impact on the realistic version of ENSO in climate models. This in turn should not only provide more accurate ENSO forecasts for the region, but a longer lead time for users to prepare for the event,” he said.

ENSO is a climate phenomenon based in the tropical Pacific Ocean. Its events bring good rains and even floods over most parts of the world in some years and droughts in others, depending on whether the phenomenon is in a warm or cold phase. The warm phase is referred to as El Nino, when the waters over the tropical east Pacific are heated up, but when cooled, it is termed La Nina. La Nina was responsible for the favourable rains over much of Southern Africa, including Zimbabwe, during the 2016/17 rainfall season. The El Nino occurrence a year before had devastating drought effects that was characterised by scorching heat and widespread water shortages. This work was published in a high-profile journal, Nature Scientific Reports

ARU is a flagship inter- and trans-disciplinary research programme focusing on the under-researched area of montane communities. It was launched in June 2015 and is based on the Qwaqwa Campus. 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept