Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 September 2022 | Story Leonie Bolleurs | Photo Johané Odendaal and Edward Lee
UFS Solar car
Team UFS entered the Sasol Solar Challenge for the very first time this year, competing with seven other teams and showcasing their technological input and innovation.

Excitement. Nervousness. A thousand thoughts going through our minds, but primarily “Are we really ready for the challenges that lie ahead?” and “What did we get ourselves into?” In the moments leading up to this year’s Sasol Solar Challenge, these were the thoughts and emotions of Team UFS, who entered their solar car, Lengau.

“But I had confidence in the team,” says Dr Hendrik van Heerden from the UFS Department of Physics at the University of the Free State (UFS) and project manager of Team UFS who entered the challenge for the very first time this year.

Testing perseverance

Entering the Sasol Solar Challenge – a biennial competition that has been running since 2008 – Team UFS competed against seven other teams (representing local and international universities, high schools, and engineering teams), sharing the public roads of South Africa with trucks and regular traffic, sometimes experiencing steep mountain climbs, testing not only their technological input and innovation, but also their perseverance over an eight-day period. 

“One of our main challenges was the long time on the road, to which the heavy weight of the solar car, efficiency of the solar panels, and the effective charging of the battery contributed,” says Dr Van Heerden, stating that these problems were difficult to tackle with the small budget they had. “We, however, stayed positive and was determined to pull through.” 

“We were also open for learning from the other teams, the scrutineers, and observers regarding the mechanical, electrical, and body of competing solar cars. Thus, building knowledge and collaborating is a success we celebrate,” he adds.

In the end it paid off, as Team UFS completed the race, covering a distance of more than 500 km and ending in seventh place overall. The team that finished with the greatest distance covered within the allotted time won the challenge, in this instance the Brunel Solar Team, covering 4 228,2 km.

Dr Van Heerden believes that they did exceptionally well for a debut team, proving themselves against the best. “I am of the opinion that this challenge made us stronger and gave each of us a new perspective on how we should approach life,” he adds.

“As we are all enthusiastic about science and engineering, this challenge inspired us to build towards a future where renewable energy could be an important source of energy in South Africa.”
For a debut team, we did exceptionally well, proving ourselves against the best. – Dr Hendrik van Heerden.

Learning the ropes

The teams left Carnival City in Johannesburg on 9 September 2022 and arrived at the finish line at the V&A Waterfront in Cape Town on Friday 16 September 2022.

Talking about the next race, Dr Van Heerden says he wants to build a better, more effective solar car. “We strive to continuously improve the design, technology, and science going into our car,” he says. 

“For this challenge, we were interested in learning about the mechanical, electrical, and overall body of a solar car. Hence, our solar vehicle was designed well enough to participate and reliable enough to succeed.”

According to him, their focus will shift to competing against the other teams for the next Sasol Solar Challenge. “We will also be more prepared, since we now know what to expect from the challenge. It was our first time participating in the Sasol Solar Challenge, and we’ve learnt so much from the past two weeks – we will carry that forward to the next challenge.

 

News Archive

UFS boasts with world class research apparatus
2005-10-20

 

 

At the launch of the diffractometer were from the left Prof Steve Basson (Chairperson:  Department of Chemistry at the UFS), Prof Jannie Swarts (Unit for Physical and Macro-molecular Chemistry at the UFS Department of Chemistry), Mr Pari Antalis (from the provider of the apparatus - Bruker SA), Prof Herman van Schalkwyk (Dean:  Faculty of Natural and Agricultural Sciences at the UFS), Prof André Roodt (head of the X-ray diffraction unit at the UFS Department of Chemistry) and Prof Teuns Verschoor (Vice-Rector:  Academic Operations at the UFS).

UFS boasts with world class research apparatus
The most advanced single crystal X-ray diffractometer in Africa has been installed in the Department of Chemistry at the University of the Free State (UFS).

“The diffractometer provides an indispensable technique to investigate compounds for medicinal application for example in breast, prostate and related bone cancer identification and therapy, currently synthesized in the Department of Chemistry.  It also includes the area of homogeneous catalysis where new compounds for industrial application are synthesised and characterised and whereby SASOL and even the international petrochemical industry could benefit, especially in the current climate of increased oil prices,” said Prof Andrè Roodt, head of the X-ray diffraction unit at the UFS Department of Chemistry.

The installation of the Bruker Kappa APEX II single crystal diffractometer is part of an innovative programme of the UFS management to continue its competitive research and extend it further internationally.

“The diffractometer is the first milestone of the research funding programme for the Department of Chemistry and we are proud to be the first university in Africa to boast with such advanced apparatus.  We are not standing back for any other university in the world and have already received requests for research agreements from universities such as the University of Cape Town,” said Prof Herman van Schalkwyk, Dean:  Faculty of Natural and Agricultural Sciences at the UFS.

The diffractometer is capable of accurately analysing molecules in crystalline form within a few hours and obtain the precise geometry – that on a sample only the size of a grain of sugar.   It simultaneously gives the exact distance between two atoms, accurate to less than fractions of a billionth of a millimetre.

“It allows us to investigate certain processes in Bloemfontein which has been impossible in the past. We now have a technique locally by which different steps in key chemical reactions can be evaluated much more reliable, even at temperatures as low as minus 170 degrees centigrade,” said Prof Roodt.

A few years ago these analyses would have taken days or even weeks. The Department of Chemistry now has the capability to investigate chemical compounds in Bloemfontein which previously had to be shipped to other, less sophisticate sites in the RSA or overseas (for example Sweden, Russia and Canada) at significant extra costs.

Media release
Issued by:Lacea Loader
Media Representative
Tel:   (051) 401-2584
Cell:  083 645 2454
E-mail:  loaderl.stg@mail.uovs.ac.za
19 October 2005   

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept