Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 September 2022 | Story Leonie Bolleurs | Photo Johané Odendaal and Edward Lee
UFS Solar car
Team UFS entered the Sasol Solar Challenge for the very first time this year, competing with seven other teams and showcasing their technological input and innovation.

Excitement. Nervousness. A thousand thoughts going through our minds, but primarily “Are we really ready for the challenges that lie ahead?” and “What did we get ourselves into?” In the moments leading up to this year’s Sasol Solar Challenge, these were the thoughts and emotions of Team UFS, who entered their solar car, Lengau.

“But I had confidence in the team,” says Dr Hendrik van Heerden from the UFS Department of Physics at the University of the Free State (UFS) and project manager of Team UFS who entered the challenge for the very first time this year.

Testing perseverance

Entering the Sasol Solar Challenge – a biennial competition that has been running since 2008 – Team UFS competed against seven other teams (representing local and international universities, high schools, and engineering teams), sharing the public roads of South Africa with trucks and regular traffic, sometimes experiencing steep mountain climbs, testing not only their technological input and innovation, but also their perseverance over an eight-day period. 

“One of our main challenges was the long time on the road, to which the heavy weight of the solar car, efficiency of the solar panels, and the effective charging of the battery contributed,” says Dr Van Heerden, stating that these problems were difficult to tackle with the small budget they had. “We, however, stayed positive and was determined to pull through.” 

“We were also open for learning from the other teams, the scrutineers, and observers regarding the mechanical, electrical, and body of competing solar cars. Thus, building knowledge and collaborating is a success we celebrate,” he adds.

In the end it paid off, as Team UFS completed the race, covering a distance of more than 500 km and ending in seventh place overall. The team that finished with the greatest distance covered within the allotted time won the challenge, in this instance the Brunel Solar Team, covering 4 228,2 km.

Dr Van Heerden believes that they did exceptionally well for a debut team, proving themselves against the best. “I am of the opinion that this challenge made us stronger and gave each of us a new perspective on how we should approach life,” he adds.

“As we are all enthusiastic about science and engineering, this challenge inspired us to build towards a future where renewable energy could be an important source of energy in South Africa.”
For a debut team, we did exceptionally well, proving ourselves against the best. – Dr Hendrik van Heerden.

Learning the ropes

The teams left Carnival City in Johannesburg on 9 September 2022 and arrived at the finish line at the V&A Waterfront in Cape Town on Friday 16 September 2022.

Talking about the next race, Dr Van Heerden says he wants to build a better, more effective solar car. “We strive to continuously improve the design, technology, and science going into our car,” he says. 

“For this challenge, we were interested in learning about the mechanical, electrical, and overall body of a solar car. Hence, our solar vehicle was designed well enough to participate and reliable enough to succeed.”

According to him, their focus will shift to competing against the other teams for the next Sasol Solar Challenge. “We will also be more prepared, since we now know what to expect from the challenge. It was our first time participating in the Sasol Solar Challenge, and we’ve learnt so much from the past two weeks – we will carry that forward to the next challenge.

 

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept