Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 September 2022 | Story Anthony Mthembu | Photo Supplied
Letsatsi Lekhooa
Letsatsi Lekhooa, a UFS student who was selected to be part of the COP27 Simulation Model.

Nearly 150 students from across the world will gather in Egypt for the COP27 Simulation Model from 9 September to mid- October 2022. Among them will be Letsatsi Lekhooa, a Master of Science student specialising in Climate Change from the University of the Free State (UFS). 

Lekhooa was one of 150 students from a pool of more than 1 800 applicants across the world who were selected to be part of this prestigious initiative. “This opportunity is appealing, because as young people we need to work hard to not only ensure that we break through walls, but to also represent our university well everywhere we go,” Lekhooa indicated.

The COP27 Simulation Model

The COP27 Simulation Model, which is organised by the British University in Egypt along with the United Nations Development Programme (UNDP), is a worldwide climate conference led by and targeted at the youth. The conference is important for several reasons, such as encouraging conversations around climate action among the youth. As it stands, the initiative is split into two categories, which include the hybrid capacity-building programme that started in September, and the COP27 Mock Conference set to begin in October. Lekhooa is currently engaged in the online capacity-building programme, which he describes as a learning curve. “Every day I learn something new, and I enjoy it because the process is assisting me in learning more about this climate change issue,” Lekhooa expressed. 

The benefits of attending the COP27 Mock Conference

Although the first leg of the COP27 Simulation Model is online, Lekhooa will get the opportunity to travel to Egypt and physically be part of the COP27 Mock Conference on the campus of the British University in Egypt. As such, he hopes to take away as much as possible from the experience. “I hope to learn about the ways in which I can better communicate this climate change issue, not only in my home country of Lesotho, but generally in Southern Africa,” said Lekhooa. Furthermore, through his interactions with international scholars, he hopes to create and encourage a collaborative spirit to battle climate change. 

The experience does not only serve as a learning curve for Lekhooa, but it is also one of the key steps that will allow him to reach a life goal. “I would like to be an international consultant in bodies such as the Intergovernmental Panel on Climate Change (IPCC), and the United Nations Framework Convention on Climate Change (UNFCCC), as they play a key role in making decisions on climate change,” Lekhooa highlighted.

News Archive

State-of-the-art physics equipment and investment in students result in academic success
2017-09-26

Description: State-of-the-art physics equipment 1 Tags: State-of-the-art physics equipment 1 

At the recent nanotechnology facility tour at the UFS,
were, from the left, Dr Mthuthuzeli Zamxaka, SAASTA;
Prof Hendrik Swart, Sarchi Chair in the Department of Physics;
and Xolani Makhoba, Department of Science and Technology.
Photo: Leonie Bolleurs

Nanoscience, which is revealing new properties of very small arrangements of atoms, called nanoparticles, is opening a new world of possibilities. The Department of Physics at the University of the Free State is undertaking fundamental research with potential commercial applications. Its equipment and expertise is giving solid state physics research the edge in South Africa.

The UFS team of researchers and students are passionate about studying planets and atoms, all under one roof. Recently, the department, in collaboration with the South African Agency for Science and Technology Advancement (SAASTA), hosted a nanotechnology facility tour to give the public, learners and the media the opportunity to familiarise themselves with the science of nanotechnology, its origins, potential applications and risks.

Successes of the department
According to Prof Hendrik Swart, Senior Professor in the Department of Physics, the increase in resources since 2008 is playing a big role in the success rate of its research outputs. The Sarchi Chair awarded to Prof Swart in 2012 (bringing with it funding for equipment and bursaries) also contributed to the successes in the department.

The UFS Directorate Research Development also availed funding that was used for bursaries. These bursaries made it possible for the department to appoint 10 post-doctoral fellows, not one of them originally from South Africa.

The investment in people and equipment resulted in researchers and students publishing some 80 articles in 2016. Their work was also cited more than 900 times by other researchers in that year.

Another highlight in terms of the department’s growth in the past 10 years is the new wing of the Physics Building. Physics at the UFS is the only place in sub-Saharan Africa where state-of-the art equipment is found under one roof.

Description: State-of-the-art physics equipment 2  Tags: State-of-the-art physics equipment 2  

Antonie Fourie, Junior Lecturer in the UFS Department of
Physics, explained to a group of delegates and
members of the media the workings of an electron beam
evaporation system.
Photo: Leonie Bolleurs

Application of research
The department is a unique research facility with equipment that includes the X-ray Photoelectron Spectrometer (for the study of atoms), the Scanning Auger Microscope, as well as the Ion Time-of-Flight Secondary Ion Mass Spectrometer (revealing the chemical bonds in a sample, and drawing maps of the positions of atoms).

One of the areas on which the department is focusing its research, is phosphors. Researchers are exploring light emitting diodes (LEDs) which use less energy, are brighter and provide a wider viewing field. They are also looking into LED displays (LCDs) which are used in flat screens – the phosphors create the different colours and backlighting.

The research on solar cells reveals that phosphors can increase their efficiency by increasing the range of light frequencies which can be converted into electricity. Glow-in-the-dark coatings absorb light in the day and emit it later so cells can charge at night. As glow-in-the-dark phosphors become cheaper and more effective, they can be used as a lighting substitute on the walls of houses, street numbers and stop signs.

Video production of the Department of Physics research and equipment

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept