Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 September 2022 | Story Anthony Mthembu | Photo Supplied
Letsatsi Lekhooa
Letsatsi Lekhooa, a UFS student who was selected to be part of the COP27 Simulation Model.

Nearly 150 students from across the world will gather in Egypt for the COP27 Simulation Model from 9 September to mid- October 2022. Among them will be Letsatsi Lekhooa, a Master of Science student specialising in Climate Change from the University of the Free State (UFS). 

Lekhooa was one of 150 students from a pool of more than 1 800 applicants across the world who were selected to be part of this prestigious initiative. “This opportunity is appealing, because as young people we need to work hard to not only ensure that we break through walls, but to also represent our university well everywhere we go,” Lekhooa indicated.

The COP27 Simulation Model

The COP27 Simulation Model, which is organised by the British University in Egypt along with the United Nations Development Programme (UNDP), is a worldwide climate conference led by and targeted at the youth. The conference is important for several reasons, such as encouraging conversations around climate action among the youth. As it stands, the initiative is split into two categories, which include the hybrid capacity-building programme that started in September, and the COP27 Mock Conference set to begin in October. Lekhooa is currently engaged in the online capacity-building programme, which he describes as a learning curve. “Every day I learn something new, and I enjoy it because the process is assisting me in learning more about this climate change issue,” Lekhooa expressed. 

The benefits of attending the COP27 Mock Conference

Although the first leg of the COP27 Simulation Model is online, Lekhooa will get the opportunity to travel to Egypt and physically be part of the COP27 Mock Conference on the campus of the British University in Egypt. As such, he hopes to take away as much as possible from the experience. “I hope to learn about the ways in which I can better communicate this climate change issue, not only in my home country of Lesotho, but generally in Southern Africa,” said Lekhooa. Furthermore, through his interactions with international scholars, he hopes to create and encourage a collaborative spirit to battle climate change. 

The experience does not only serve as a learning curve for Lekhooa, but it is also one of the key steps that will allow him to reach a life goal. “I would like to be an international consultant in bodies such as the Intergovernmental Panel on Climate Change (IPCC), and the United Nations Framework Convention on Climate Change (UNFCCC), as they play a key role in making decisions on climate change,” Lekhooa highlighted.

News Archive

Carbon dioxide makes for more aromatic decaffeinated coffee
2017-10-27


 Description: Carbon dioxide makes for more aromatic decaffeinated coffee 1b Tags: Carbon dioxide makes for more aromatic decaffeinated coffee 1b 

The Inorganic Group in the Department of Chemistry
at the UFS is systematically researching the utilisation
of carbon dioxide. From the left, are, Dr Ebrahiem Botha,
Postdoctoral Fellow; Mahlomolo Khasemene, MSc student;
Prof André Roodt; Dr Marietjie Schutte-Smith, Senior Lecturer;
and Mokete Motente, MSc student.
Photo: Charl Devenish

Several industries in South Africa are currently producing hundreds of thousands of tons of carbon dioxide a year, which are released directly into the air. A typical family sedan doing around 10 000 km per year, is annually releasing more than one ton of carbon dioxide into the atmosphere.

The Inorganic Chemistry Research Group in the Department of Chemistry at the University of the Free State (UFS), in collaboration with the University of Zurich in Switzerland, has focused in recent years on using carbon dioxide – which is regarded as a harmful and global warming gas – in a meaningful way. 

According to Prof André Roodt, Head of Inorganic Chemistry at the UFS, the Department of Chemistry has for the past five decades been researching natural products that could be extracted from plants. These products are manufactured by plants through photosynthesis, in other words the utilisation of sunlight and carbon dioxide, nitrogen, and other nutrients from the soil.

Caffeine and chlorophyll 
“The Inorganic group is systematically researching the utilisation of carbon dioxide. Carbon dioxide is absorbed by plants through chlorophyll and used to make interesting and valuable compounds and sugars, which in turn could be used for the production of important new medicines,” says Prof Roodt.

Caffeine, a major energy enhancer, is also manufactured through photosynthesis in plants. It is commonly found in tea and coffee, but also (artificially added) in energy drinks. Because caffeine is a stimulant of the central nervous system and reduces fatigue and drowsiness, some people prefer decaffeinated coffee when enjoying this hot drink late at night. 

Removing caffeine from coffee could be expensive and time-consuming, but also environmentally unfriendly, because it involves the use of harmful and flammable liquids. Some of the Inorganic Group’s research focus areas include the use of carbon dioxide for the extraction of compounds, such as caffeine from plants. 

“Therefore, the research could lead to the availability of more decaffeinated coffee products. Although decaffeinated coffee is currently aromatic, we want to investigate further to ensure better quality flavours,” says Prof Roodt.

Another research aspect the team is focusing on is the use of carbon dioxide to extract chlorophyll from plants which have medicinal properties themselves. Chemical suppliers sell chlorophyll at R3 000 a gram. “In the process of investigating chlorophyll, our group discovered simpler techniques to comfortably extract larger quantities from green vegetables and other plants,” says Prof Roodt.

Medicines
In addition, the Inorganic Research Group is also looking to use carbon dioxide as a building block for more valuable compounds. Some of these compounds will be used in the Inorganic Group’s research focus on radiopharmaceutical products for the identification and possibly even the treatment of diseases such as certain cancers, tuberculosis, and malaria.

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept