Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 September 2022 | Story Anthony Mthembu | Photo Supplied
Letsatsi Lekhooa
Letsatsi Lekhooa, a UFS student who was selected to be part of the COP27 Simulation Model.

Nearly 150 students from across the world will gather in Egypt for the COP27 Simulation Model from 9 September to mid- October 2022. Among them will be Letsatsi Lekhooa, a Master of Science student specialising in Climate Change from the University of the Free State (UFS). 

Lekhooa was one of 150 students from a pool of more than 1 800 applicants across the world who were selected to be part of this prestigious initiative. “This opportunity is appealing, because as young people we need to work hard to not only ensure that we break through walls, but to also represent our university well everywhere we go,” Lekhooa indicated.

The COP27 Simulation Model

The COP27 Simulation Model, which is organised by the British University in Egypt along with the United Nations Development Programme (UNDP), is a worldwide climate conference led by and targeted at the youth. The conference is important for several reasons, such as encouraging conversations around climate action among the youth. As it stands, the initiative is split into two categories, which include the hybrid capacity-building programme that started in September, and the COP27 Mock Conference set to begin in October. Lekhooa is currently engaged in the online capacity-building programme, which he describes as a learning curve. “Every day I learn something new, and I enjoy it because the process is assisting me in learning more about this climate change issue,” Lekhooa expressed. 

The benefits of attending the COP27 Mock Conference

Although the first leg of the COP27 Simulation Model is online, Lekhooa will get the opportunity to travel to Egypt and physically be part of the COP27 Mock Conference on the campus of the British University in Egypt. As such, he hopes to take away as much as possible from the experience. “I hope to learn about the ways in which I can better communicate this climate change issue, not only in my home country of Lesotho, but generally in Southern Africa,” said Lekhooa. Furthermore, through his interactions with international scholars, he hopes to create and encourage a collaborative spirit to battle climate change. 

The experience does not only serve as a learning curve for Lekhooa, but it is also one of the key steps that will allow him to reach a life goal. “I would like to be an international consultant in bodies such as the Intergovernmental Panel on Climate Change (IPCC), and the United Nations Framework Convention on Climate Change (UNFCCC), as they play a key role in making decisions on climate change,” Lekhooa highlighted.

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept