Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 September 2022 | Story Anthony Mthembu | Photo Supplied
Letsatsi Lekhooa
Letsatsi Lekhooa, a UFS student who was selected to be part of the COP27 Simulation Model.

Nearly 150 students from across the world will gather in Egypt for the COP27 Simulation Model from 9 September to mid- October 2022. Among them will be Letsatsi Lekhooa, a Master of Science student specialising in Climate Change from the University of the Free State (UFS). 

Lekhooa was one of 150 students from a pool of more than 1 800 applicants across the world who were selected to be part of this prestigious initiative. “This opportunity is appealing, because as young people we need to work hard to not only ensure that we break through walls, but to also represent our university well everywhere we go,” Lekhooa indicated.

The COP27 Simulation Model

The COP27 Simulation Model, which is organised by the British University in Egypt along with the United Nations Development Programme (UNDP), is a worldwide climate conference led by and targeted at the youth. The conference is important for several reasons, such as encouraging conversations around climate action among the youth. As it stands, the initiative is split into two categories, which include the hybrid capacity-building programme that started in September, and the COP27 Mock Conference set to begin in October. Lekhooa is currently engaged in the online capacity-building programme, which he describes as a learning curve. “Every day I learn something new, and I enjoy it because the process is assisting me in learning more about this climate change issue,” Lekhooa expressed. 

The benefits of attending the COP27 Mock Conference

Although the first leg of the COP27 Simulation Model is online, Lekhooa will get the opportunity to travel to Egypt and physically be part of the COP27 Mock Conference on the campus of the British University in Egypt. As such, he hopes to take away as much as possible from the experience. “I hope to learn about the ways in which I can better communicate this climate change issue, not only in my home country of Lesotho, but generally in Southern Africa,” said Lekhooa. Furthermore, through his interactions with international scholars, he hopes to create and encourage a collaborative spirit to battle climate change. 

The experience does not only serve as a learning curve for Lekhooa, but it is also one of the key steps that will allow him to reach a life goal. “I would like to be an international consultant in bodies such as the Intergovernmental Panel on Climate Change (IPCC), and the United Nations Framework Convention on Climate Change (UNFCCC), as they play a key role in making decisions on climate change,” Lekhooa highlighted.

News Archive

Dr Abdon Atangana cements his research globally by solving fractional calculus problem
2014-12-03

 

Dr Abdon Atangana

To publish 29 papers in respected international journals – and all of that in one year – is no mean feat. Postdoctoral researcher Abdon Atangana at the Institute for Groundwater Studies at the University of the Free State (UFS) reached this mark by October 2014, shortly before his 29th birthday.

His latest paper, ‘Modelling the Advancement of the Impurities and the Melted Oxygen concentration within the Scope of Fractional Calculus’, has been accepted for publication by the International Journal of Non-Linear Mechanics.

In previously-published research he solved a problem in the field of fractional calculus by introducing a fractional derivative called ‘Beta-derivative’ and its anti-derivative called ‘Atangana-Beta integral’, thereby cementing his research in this field.

Dr Atangana, originally from Cameroon, received his PhD in Geohydrology at the UFS in 2013. His research interests include:
• the theory of fractional calculus;
• modelling real world problems with fractional order derivatives;
• applications of fractional calculus;
• analytical methods for partial differential equations;
• analytical methods for ordinary differential equations;
• numerical methods for partial and ordinary differential equations; and
• iterative methods and uncertainties modelling.

Dr Atangana says that, “Applied mathematics can be regarded as the bridge between theory and practice. The use of mathematical tools for solving real world problems is as old as creation itself. As written in the book Genesis ‘And God saw the light, that it was good; and divided the light from the darkness’, the word division appears here as the well-known method of separation of variables, this method is usually employed to solve a class of linear partial differential equations”.

“A mathematical model is a depiction of a system using mathematical concepts and language. The procedure of developing a mathematical model is termed mathematical modelling. Mathematical models are used not only in natural sciences, but also in social sciences such as economics, psychology, sociology and political sciences. These models help to explain systems and to study the effects of different components, and to make predictions about behaviours.”

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept