Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
15 September 2022 | Story Gerda-Marié van Rooyen | Photo Supplied
Lisa Msiza
Lisa Nondumiso Msiza is the first Deaf person from the UFS to receive the prestigious Abe Bailey travel bursary.

Lisa Nondumiso Msiza is the first Deaf person from the UFS to receive the prestigious Abe Bailey Travel Bursary. This second-year student in Linguistics and Sign Language will visit the UK for three weeks, starting late November. Charity Morrison of the Centre for Universal Access and Disability Support (CUADS) will accompany her to interpret for her.

“I want to show through action that Deaf people can do anything. We have the required skills; we can read and write too – just like hearing people can. I would also like to make people aware that the UFS has the facilities to accommodate Deaf people,” says Lisa. Currently, 12 Deaf students are enrolled at this tertiary institution. 

This born Johannesburger’s passion for teaching and facilitating Sign Language is contagious. “I want to observe different businesses and programmes in the UK in order to learn how to start projects and develop myself and my community as Deaf people get limited opportunities. I want to teach people on the use, culture and history of Sign Language.” 

Lisa describes herself as a kind, understanding, and loving person. As she was born deaf, Sign Language is her home language. Her parents, however, are Zulu and Ndebele speaking. She says that, although Sign Language is different in every language, she quickly adapts and communicates in it as soon as she grasps the structure of the new language.

Being named top achiever (learner) for the 2020 matric class and being crowned in fifth position at the World Deaf Model 2021, Lisa is proof that beauty and brains can co-exist. 

“I am passionate about being a teacher, facilitator, or lecturer. I enjoy teaching others sign language so we can communicate more effectively. I love Sign Language and I am always trying to inform people on the importance of learning about Deaf people and to help others understand the nature of language and communication.” 

Her future dreams include becoming a lecturer at the UFS or to continue her studies abroad, but only to gain insight and benefit her community. “I want our country to prosper and would like to have every news bulletin interpreted for the Deaf.”

News Archive

UFS physicists publish in prestigious Nature journal
2017-10-16

Description: Boyden Observatory gravitational wave event Tags: Boyden Observatory, gravitational wave event, Dr Brian van Soelen, Hélène Szegedi, multi-wavelength astronomy 
Hélène Szegedi and Dr Brian van Soelen are scientists in the
Department of Physics at the University of the Free State.

Photo: Charl Devenish

In August 2017, the Boyden Observatory in Bloemfontein played a major role in obtaining optical observations of one of the biggest discoveries ever made in astrophysics: the detection of an electromagnetic counterpart to a gravitational wave event.
 
An article reporting on this discovery will appear in the prestigious science journal, Nature, in October 2017. Co-authors of the article, Dr Brian van Soelen and Hélène Szegedi, are from the Department of Physics at the University of the Free State (UFS). Both Dr Van Soelen and Szegedi are researching multi-wavelength astronomy.
 
Discovery is the beginning of a new epoch in astronomy
 
Dr van Soelen said: “These observations and this discovery are the beginning of a new epoch in astronomy. We are now able to not only undertake multi-wavelength observations over the whole electromagnetic spectrum (radio up to gamma-rays) but have now been able to observe the same source in both electromagnetic and gravitational waves.”
 
Until recently it was only possible to observe the universe using light obtained from astronomical sources. This all changed in February 2016 when LIGO (Laser Interferometer Gravitational-Wave Observatory) stated that for the first time they had detected gravitational waves on 14 September 2015 from the merger of two black holes. Since then, LIGO has announced the detection of two more such mergers. A fourth was just reported (27 September 2017), which was the first detected by both LIGO and Virgo. However, despite the huge amount of energy released in these processes, none of this is detectable as radiation in any part of the electromagnetic spectrum. Since the first LIGO detection astronomers have been searching for possible electromagnetic counterparts to gravitational wave detections. 
 
Large international collaboration of astronomers rushed to observe source
 
On 17 August 2017 LIGO and Virgo detected the first ever gravitational waves resulting from the merger of two neutron stars. Neutron star mergers produce massive explosions called kilonovae which will produce a specific electromagnetic signature. After the detection of the gravitational wave, telescopes around the world started searching for the optical counterpart, and it was discovered to be located in an elliptical galaxy, NGC4993, 130 million light years away. A large international collaboration of astronomers, including Dr Van Soelen and Szegedi, rushed to observe this source.
 
At the Boyden Observatory, Dr Van Soelen and Szegedi used the Boyden 1.5-m optical telescope to observe the source in the early evening, from 18 to 21 August. The observations obtained at Boyden Observatory, combined with observations from telescopes in Chile and Hawaii, confirmed that this was the first-ever detection of an electromagnetic counterpart to a gravitational wave event. Combined with the detection of gamma-rays with the Fermi-LAT telescope, this also confirms that neutron star mergers are responsible for short gamma-ray bursts.  
 
The results from these optical observations are reported in A kilonova as the electromagnetic counterpart to a gravitational-wave source published in Nature in October 2017.
 
“Our paper is one of a few that will be submitted by different groups that will report on this discovery, including a large LIGO-Virgo paper summarising all observations. The main results from our paper were obtained through the New Technology Telescope, the GROND system, and the Pan-STARRS system. The Boyden observations helped to obtain extra observations during the first 72 hours which showed that the light of the source decreased much quicker than was expected for supernova, classifying this source as a kilonova,” Dr Van Soelen said.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept