Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 April 2023 | Story EDZANI NEPHALELA | Photo CHARL DEVENISH
Magdalene de Koker
Magdalena de Koker accepts a posthumous degree on behalf of her late son, Mervin Hershel van Wyk.

A grieving mother brought tears to the eyes of almost everyone present during a graduation ceremony at the University of the Free State (UFS) on Thursday 20 April, when she took to the stage to accept her late son’s posthumously awarded master’s degree.

The usually festive and jovial graduation spirit inside the Callie Human Centre at the University of the Free State’s Bloemfontein Campus turned sombre in a matter of seconds as Magdalena de Koker ascended the stage to receive her son Mervin Hershel van Wyk’s degree. The Faculty of Theology and Religion student had been on track to receive a Master of Theology degree with a specialisation in Church History and Polity, but passed away before his graduation ceremony. The posthumous degree awarding honoured Van Wyk’s memory and acknowledged his family’s support throughout his academic journey.

“My emotions are conflicted,” De Koker said. “I feel a sense of pride for my son’s accomplishments, and eagerly anticipated celebrating his graduation. However, the profound loss of my son has left me devastated. Instead of being a spectator, cheering him on from the audience, I now find myself standing in his place on stage, wearing unfamiliar shoes, unsure where the toe or heel lies.” 

His legacy lives on

Before closing the ceremony Professor Bonang Mohale, Chancellor of the UFS, said he cried because this degree had to be conferred posthumously. 

“This is sad, tragic, and regrettable,” Prof Mohale said. “We all pray and hope that our children will bury us. Mama, we pray that you get peace by acknowledging the current trauma and pain, so that there can be some acceptance in order to start the process of healing. And with that process of healing comes forgiveness. The wonderful thing about forgiveness is that it allows more healing. May the good Jehovah be with the family and the whole clan. When we pray, we say ‘Thy will be done’. Thank you, in the wake of your pain, for making the time to be with this greater family of Kovsies.” 

Dr Eugene Fortein, Senior Lecturer in Church History and Polity, said his late student was an inspiration to many. “He firmly believed that God cared about the suffering of the impoverished and oppressed, and that justice would be served to those often overlooked. These convictions fuelled his involvement in politics, unafraid to use his Christian beliefs to advocate for change through protests. His trial sermon last year from Amos 5 – ‘But let justice roll on like a river, righteousness like a never-failing stream’ – embodied his unwavering conviction that justice and righteousness were integral to his faith.” 

Van Wyk’s passing is huge a loss for his family, friends, and the UFS and South African academic communities. His dedication and commitment to his studies serve as an inspiration to all those who knew him. The UFS community mourns the loss of a talented student and scholar, but his legacy will continue to live on through his contributions to the field of theology.

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept