Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 April 2023 | Story Rulanzen Martin | Photo Charl Devenish
Dr Rouxan Fouche
Dr Rouxan Fouché on stage in the Callie Human Centre during his graduation ceremony. He hopes his PhD findings will be used to improve the UFS’s Information Technology Service-Learning (ITSL) project’s effectiveness.

When Dr Rouxan Fouché decided to undertake a PhD in Computer Science and Informatics, he was motivated by his commitment to addressing the digital divide in South Africa through service-learning. Through his research, he investigated how the UFS’s Information Technology Service-Learning (ITSL) project could be improved by collaboration with all project stakeholders to positively address and impact the digital divide in the local Mangaung community.

Dr Fouché is a lecturer in the Department of Computer Science and Informatics at the University of the Free State (UFS) and received his PhD during the UFS’s April 2023 graduation ceremonies. 

He based his PhD thesis, titled ‘Addressing the South African Digital Divide through a community-informed strategy for Service-Learning: A Critical Utopian Action Research (CUAR) Approach’, on the service-learning module he taught after he realised the positive effect of an information technology-focussed service-learning module on computer literacy levels in the local community. “The initial goal of the service-learning module was to provide free computer literacy training to computer-illiterate community members as part of the students’ community engagement,” Dr Fouché said. 

Community-focused PhD research

According to Dr Fouché researchers have recently started looking at how universities can use their service-learning modules (as part of community engagement) to bridge and address the digital divide. He also believes “current conceptualisations indicate that most university service-learning endeavours are organised without engaging with the local community or incorporating their specific needs.”

This is where he hopes his research and findings could make a difference.

His study aimed to re-evaluate and revise the ITSL project by using a hands-on, collaborative approach which included all ITSL project stakeholders. Members of the community served by the project were involved in the shared decision-making and knowledge sharing. “Furthermore, the short-term and lasting impacts of this revised community needs-led ITSL project on the participating community members were investigated.” 

The study was conducted in three cycles: Cycle 1 constituted a survey approach to identify the concerns and possible shortcomings of the ITSL project. In Cycle 2, all stakeholders participated in a ‘Future-Creating Workshop’, which reviewed findings from Cycle 1, and a utopian action plan was developed by all involved. Cycle 3 saw the revised project being implemented based on all the recommendations from the previous cycle. “This cycle also included the evaluation of the project’s immediate impact using pre-test and post-test questionnaires completed by project participants.” 

Service-learning project made a difference

When Dr Fouché initiated the ITSL project in 2015, the main objective was to serve and equip Mangaung and surrounding communities with necessary computer literacy skills. The programme entails training in Microsoft Word and Excel via two short learning programmes.

The impact of the programme was far-reaching, as it enabled participants to gain formal employment. “The participants told me that they were able to find employment as service station attendants, administrative clerks, and cashiers, among other roles, due to the computer literacy certificates they received after completing the ITSL project.” Witnessing the positive impact of the ITSL programme led Dr Fouché to focus his PhD research on improving the service-learning offerings the UFS provides for the community. 

“I realised that it was necessary to investigate how the ITSL project could be improved and tailor-made for the community it serves,” he said. 

News Archive

Eye tracker device a first in Africa
2013-07-31

 

 31 July 2013

Keeping an eye on empowerment

"If we can see what you see, we can think what you think."

Eye-tracking used to be one of those fabulous science-fiction inventions, along with Superman-like bionic ability. Could you really use the movement of your eyes to read people's minds? Or drive your car? Or transfix your enemy with a laser-beam?

Well, actually, yes, you can (apart, perhaps, from the laser beam… ). An eye tracker is not something from science fiction; it actually exists, and is widely used around the world for a number of purposes.

Simply put, an eye tracker is a device for measuring eye positions and eye movement. Its most obvious use is in marketing, to find out what people are looking at (when they see an advertisement, for instance, or when they are wandering along a supermarket aisle). The eye tracker measures where people look first, what attracts their attention, and what they look at the longest. It is used extensively in developed countries to predict consumer behaviour, based on what – literally – catches the eye.

On a more serious level, psychologists, therapists and educators can also use this device for a number of applications, such as analysis and education. And – most excitingly – eye tracking can be used by disabled people to use a computer and thereby operate a number of devices and machines. Impaired or disabled people can use eye tracking to get a whole new lease on life.

In South Africa and other developing countries, however, eye tracking is not widely used. Even though off-the-shelf webcams and open-source software can be obtained extremely cheaply, they are complex to use and the quality cannot be guaranteed. Specialist high-quality eye-tracking devices have to be imported, and they are extremely expensive – or rather – they used to be. Not anymore.

The Department of Computer Science and Informatics (CSI) at the University of the Free State has succeeded in developing a high-quality eye tracker at a fraction of the cost of the imported devices. Along with the hardware, the department has also developed specialised software for a number of applications. These would be useful for graphic designers, marketers, analysts, cognitive psychologists, language specialists, ophthalmologists, radiographers, occupational and speech therapists, and people with disabilities. In the not-too-distant future, even fleet owners and drivers would be able to use this technology.

"The research team at CSI has many years of eye-tracking experience," says team leader Prof Pieter Blignaut, "both with the technical aspect as well as the practical aspect. We also provide a multi-dimensional service to clients that includes the equipment, training and support. We even provide feedback to users.

"We have a basic desktop model available that can be used for research, and can be adapted so that people can interact with a computer. It will be possible in future to design a device that would be able to operate a wheelchair. We are working on a model incorporated into a pair of glasses which will provide gaze analysis for people in their natural surroundings, for instance when driving a vehicle.

"Up till now, the imported models have been too expensive," he continues. "But with our system, the technology is now within reach for anyone who needs it. This could lead to economic expansion and job creation."

The University of the Free State is the first manufacturer of eye-tracking devices in Africa, and Blignaut hopes that the project will contribute to nation-building and empowerment.

"The biggest advantage is that we now have a local manufacturer providing a quality product with local training and support."

In an eye-tracking device, a tiny infra-red light shines on the eye and causes a reflection which is picked up by a high-resolution camera. Every eye movement causes a change in the reflection, which is then mapped. Infra-red light is not harmful to the eye and is not even noticed. Eye movement is then completely natural.

Based on eye movements, a researcher can study cognitive patterns, driver behaviour, attention spans, even thinking patterns. A disabled person could use their eye-movements to interact with a computer, with future technology (still in development) that would enable that computer to control a wheelchair or operate machinery.

The UFS recently initiated the foundation of an eye-tracking interest group for South Africa (ETSA) and sponsor a biennial-eye tracking conference. Their website can be found at www.eyetrackingsa.co.za.

“Eye tracking is an amazing tool for empowerment and development in Africa, “ says Blignaut, “but it is not used as much as it should be, because it is seen as too expensive. We are trying to bring this technology within the reach of anyone and everyone who needs it.”

Issued by: Lacea Loader
Director: Strategic Communication

Telephone: +27 (0) 51 401 2584
Cell: +27 (0) 83 645 2454
E-mail: news@ufs.ac.za
Fax: +27 (0) 51 444 6393

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept