Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
21 April 2023 | Story Rulanzen Martin | Photo Charl Devenish
Dr Rouxan Fouche
Dr Rouxan Fouché on stage in the Callie Human Centre during his graduation ceremony. He hopes his PhD findings will be used to improve the UFS’s Information Technology Service-Learning (ITSL) project’s effectiveness.

When Dr Rouxan Fouché decided to undertake a PhD in Computer Science and Informatics, he was motivated by his commitment to addressing the digital divide in South Africa through service-learning. Through his research, he investigated how the UFS’s Information Technology Service-Learning (ITSL) project could be improved by collaboration with all project stakeholders to positively address and impact the digital divide in the local Mangaung community.

Dr Fouché is a lecturer in the Department of Computer Science and Informatics at the University of the Free State (UFS) and received his PhD during the UFS’s April 2023 graduation ceremonies. 

He based his PhD thesis, titled ‘Addressing the South African Digital Divide through a community-informed strategy for Service-Learning: A Critical Utopian Action Research (CUAR) Approach’, on the service-learning module he taught after he realised the positive effect of an information technology-focussed service-learning module on computer literacy levels in the local community. “The initial goal of the service-learning module was to provide free computer literacy training to computer-illiterate community members as part of the students’ community engagement,” Dr Fouché said. 

Community-focused PhD research

According to Dr Fouché researchers have recently started looking at how universities can use their service-learning modules (as part of community engagement) to bridge and address the digital divide. He also believes “current conceptualisations indicate that most university service-learning endeavours are organised without engaging with the local community or incorporating their specific needs.”

This is where he hopes his research and findings could make a difference.

His study aimed to re-evaluate and revise the ITSL project by using a hands-on, collaborative approach which included all ITSL project stakeholders. Members of the community served by the project were involved in the shared decision-making and knowledge sharing. “Furthermore, the short-term and lasting impacts of this revised community needs-led ITSL project on the participating community members were investigated.” 

The study was conducted in three cycles: Cycle 1 constituted a survey approach to identify the concerns and possible shortcomings of the ITSL project. In Cycle 2, all stakeholders participated in a ‘Future-Creating Workshop’, which reviewed findings from Cycle 1, and a utopian action plan was developed by all involved. Cycle 3 saw the revised project being implemented based on all the recommendations from the previous cycle. “This cycle also included the evaluation of the project’s immediate impact using pre-test and post-test questionnaires completed by project participants.” 

Service-learning project made a difference

When Dr Fouché initiated the ITSL project in 2015, the main objective was to serve and equip Mangaung and surrounding communities with necessary computer literacy skills. The programme entails training in Microsoft Word and Excel via two short learning programmes.

The impact of the programme was far-reaching, as it enabled participants to gain formal employment. “The participants told me that they were able to find employment as service station attendants, administrative clerks, and cashiers, among other roles, due to the computer literacy certificates they received after completing the ITSL project.” Witnessing the positive impact of the ITSL programme led Dr Fouché to focus his PhD research on improving the service-learning offerings the UFS provides for the community. 

“I realised that it was necessary to investigate how the ITSL project could be improved and tailor-made for the community it serves,” he said. 

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept