Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 April 2023 | Story Gerda-Marié van Rooyen | Photo Charl Devenish
Jenna Clarkson
Jenna Clarkson is a devout communications student and a karateka. She had to deal with several health challenges during her studies, but nevertheless dreams of obtaining her PhD in Communication at the UFS.

Overcoming numerous health obstacles during her studies, Jenna Clarkson is in high spirits after obtaining her degree from the University of the Free State (UFS). While most students enjoyed an active social and campus life, she often had to visit the hospital while studying. Receiving her BA Integrated Organisational Communication qualification during the April 2023 graduation ceremony has been a healing balm after many years of pain. 
 
The Faculty of the Humanities graduate was diagnosed with type 2 diabetes in 2021. In 2022, after several physiotherapists and emergency room visits, she was also diagnosed with juvenile disc disorder and sacroiliitis. The latter condition affects one or both sacroiliac joints where the lower spine and pelvis meet and may cause pain in one or both legs. 

Initially, Jenna assumed she had hurt herself during karate practice, but the pain would not subside. “I would randomly lose feeling in my legs and couldn’t sit. I spent a year in pain and struggled to walk, lift heavy objects, cough, and sleep on my side. I struggled with the fact that this was going to be an issue for the rest of my life.” 

However, with a lot of love from her friends, support from her lecturers, and grace with herself, Jenna learned how to handle the pain and to realise when she has met her limits. This student from Johannesburg says that although pain is frustrating and overwhelming, having emotional support helps. “Sometimes just having someone to listen and be there is the best thing.”

The journey to the graduation stage might have been difficult for this high-flyer, but it was a worthwhile undertaking. 

“I feel over the moon, and a little overwhelmed that it happened,” says Jenna about getting her degree in communications. Loving her field of study, she attended class eagerly and enjoyed her modules. “I love that I am allowed to create, I get to make something. There’s nothing more amazing than getting a brief and being able to look at it and create something from it that nobody else would have created. The bonus is that I am quite good at it too,” adds the student who is currently doing her honours degree at the UFS. 

Getting her first degree from the UFS, Jenna is determined to excel in her chosen field. 

“I would like to get my honours degree cum laude and do a PhD degree, but I am taking it one degree at a time. If it doesn’t work out that way, it’s okay. I am very good at figuring things out and making a plan.”

Jenna is determined to make her parents proud. “Having lost my dad at four, I do everything with the hope that he would be proud of my choices. My mom sacrificed a lot to give me the best life she could.”

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept