Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 April 2023 | Story Gerda-Marié van Rooyen | Photo Charl Devenish
Jenna Clarkson
Jenna Clarkson is a devout communications student and a karateka. She had to deal with several health challenges during her studies, but nevertheless dreams of obtaining her PhD in Communication at the UFS.

Overcoming numerous health obstacles during her studies, Jenna Clarkson is in high spirits after obtaining her degree from the University of the Free State (UFS). While most students enjoyed an active social and campus life, she often had to visit the hospital while studying. Receiving her BA Integrated Organisational Communication qualification during the April 2023 graduation ceremony has been a healing balm after many years of pain. 
 
The Faculty of the Humanities graduate was diagnosed with type 2 diabetes in 2021. In 2022, after several physiotherapists and emergency room visits, she was also diagnosed with juvenile disc disorder and sacroiliitis. The latter condition affects one or both sacroiliac joints where the lower spine and pelvis meet and may cause pain in one or both legs. 

Initially, Jenna assumed she had hurt herself during karate practice, but the pain would not subside. “I would randomly lose feeling in my legs and couldn’t sit. I spent a year in pain and struggled to walk, lift heavy objects, cough, and sleep on my side. I struggled with the fact that this was going to be an issue for the rest of my life.” 

However, with a lot of love from her friends, support from her lecturers, and grace with herself, Jenna learned how to handle the pain and to realise when she has met her limits. This student from Johannesburg says that although pain is frustrating and overwhelming, having emotional support helps. “Sometimes just having someone to listen and be there is the best thing.”

The journey to the graduation stage might have been difficult for this high-flyer, but it was a worthwhile undertaking. 

“I feel over the moon, and a little overwhelmed that it happened,” says Jenna about getting her degree in communications. Loving her field of study, she attended class eagerly and enjoyed her modules. “I love that I am allowed to create, I get to make something. There’s nothing more amazing than getting a brief and being able to look at it and create something from it that nobody else would have created. The bonus is that I am quite good at it too,” adds the student who is currently doing her honours degree at the UFS. 

Getting her first degree from the UFS, Jenna is determined to excel in her chosen field. 

“I would like to get my honours degree cum laude and do a PhD degree, but I am taking it one degree at a time. If it doesn’t work out that way, it’s okay. I am very good at figuring things out and making a plan.”

Jenna is determined to make her parents proud. “Having lost my dad at four, I do everything with the hope that he would be proud of my choices. My mom sacrificed a lot to give me the best life she could.”

News Archive

Link between champagne bubbles and the UFS?
2012-11-16

Prof. Lodewyk Kock with an example of a front page of the publication FEMS Yeast Research, as adapted by F. Belliard, FEMS Central Office.
Photo: Leatitia Pienaar
15 November 2012

What is the link between the bubbles in champagne and breakthrough research being done at the Mayo Clinic in America? Nano research being done at our university.

Prof. Lodewyk Kock of Biotechnology says a human being consists of millions of minute cells that are invisible to the eye. The nano technology team at the UFS have developed a technique that allows researchers to look into such a cell, as well as other microorganisms. In this way, they can get an idea of what the cell’s “insides” look like.

The UFS team – consisting of Profs. Kock, Hendrik Swart (Physics), Pieter van Wyk (Centre for Microscopy), as well as Dr Chantel Swart (Biotechnology), Dr Carlien Pohl (Biotechnology) and Liza Coetsee (Physics) – were amazed to see that the inside of cells consist of a maze of small tunnels or blisters. Each tunnel is about 100 and more nanometres in diameter – about one ten thousandth of a millimetre – that weaves through the cells in a maze.

It was also found that these tunnels are the “lungs” of the cells. Academics doing research on yeast have had to sit up and take notice of the research being done at the UFS – to the extent that these “lungs” will appear on the front page of the highly acclaimed FEMS Yeast Research for all of 2013.

The Mayo Clinic, in particular, now wants to work with the UFS to study cancer cells in more detail in order to fight this disease, says Prof. Kock. The National Cancer Institute of America has also shown interest. This new nano technology for biology can assist in the study and development of nano medicine that can be used in the treatment of cancer and other life threatening diseases. Nano medicine uses nano metal participles that are up to one billionth of a metre in size.

Prof. Kock says laboratory tests indicate that nano medicine can improve the efficacy of anti-cancer medicine, which makes the treatment less toxic. “According to the Mayo Clinic team, nano particles are considered as a gold cartridge which is being fired directly at a cancer tumour. This is compared to fine shot that spreads through the body and also attacks healthy cells.”

“This accuracy implies that the chemotherapy dose can be lowered with fewer side effects. The Mayo Clinic found that one-tenth of the normal dosage is more effective against pancreas cancer in this way than the full dosage with a linkage to nano particles. According to the clinic, this nano medicine could also delay the spread of cancer,” says Prof. Kock.

The nano particles are used as messengers that convey anti-cancer treatment to cancer cells, where it then selectively kills the cancer cells. The transport and transfer of these medicines with regard to gold nano particles can be traced with the UFS’s nano technology to collect more information, especially where it works on the cell.

“With the new nano technology of the UFS, it is possible to do nano surgery on the cells by slicing the cells in nanometre thin slices while the working of the nano medicine is studied. In this way, it can be established if the nano medicine penetrates the cells or if it is only associated with the tiny tunnels,” says Prof. Kock.

And in champagne the small “lungs” are responsible for the bubbles. The same applies to beer and with this discovery a whole new reach field opens for scientists.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept