Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 April 2023 | Story Leonie Bolleurs | Photo Supplied
“Seeing an African child succeed was always my motivation to work hard and strive for success,” says Masabata Chabeli, founder of NDSH, a newly established coding and robotics skills development programme.

Masabata Chabeli’s journey from teacher to tech entrepreneur led her to establish New Dawn Skills Hub (NDSH), which focuses on developing skills in coding and robotics, building a new generation of artificial intelligence (AI) and fourth industrial revolution (4IR) experts. 

Chabeli is a former UFS lecturer and a graduate of the EBL Institute of Business and Technology, which partners with the UFS Business School on community development, entrepreneurship development, and digital skills development programmes that benefit not only the youth but South Africans at large. 

Through NDSH she aims to bridge the gap between education and industry to from an early age equip pre-schoolers and learners with the skills necessary for success in today’s rapidly evolving technological landscape. 

She believes that when it comes to inventing new things not much has been done to encourage learners to be creative and innovative, especially at school level. “We have a long way to go,” she says.

Even though NDSH is still at an early stage of its development as a coding and robotics skills development service provider, the company already offers a range of programmes, from early childhood development (ECD) programmes for ages six months to Grade R, to a tutoring programme covering mathematics, science and technology.

Discovering her passion

Although she had always been a tech enthusiast, Chabeli never imagined pursuing a career in technology, let alone starting a business. “Teaching has always been my first passion,” she says. “But after more than a decade of teaching, I realised I wasn’t fulfilled. I wanted more, but I didn't know what that was.”

It wasn’t until 2017, when she was one of 45 lecturers from around the country selected to spend a month in China learning about 4IR technologies, including courses on coding and robotics, 3D-printing applications, and intelligent manufacturing, that Chabeli’s interest in tech was piqued. Two years later, she resigned from her position as a lecturer at the University of Free State to start her own tech business – and she hasn't looked back since.

Walking the road with Chabeli was Lesala Khetheng, Business Manager representing the EBL Institute of Business and Technology. Chabeli completed EBL’s Entrepreneurship and Business Literacy Programme and the Women in Digital Business Challenge.

I strongly encourage women who want to enter the innovation space to do so, because there is a great need. We must raise a next generation of innovators, who can solve their own problems through innovative ideas. – Masabata Chabeli
Overcoming the obstacles 

The journey towards achieving one’s dreams is often riddled with obstacles. “As a teacher with no prior business experience, I was ill-prepared for the day-to-day operations of running a business, and I neglected that aspect. However, I was fortunate enough to participate in the Entrepreneur Business Literacy (EBL) Institute mentorship programme in 2021-2022, which taught me about critical business components such as marketing, business management, cashflow, sales, and more.

“Having to prove that ‘I can’ as a black woman in technical fields has also been one of the challenges that I had to overcome. I have had to go above and beyond and work 10 times harder than my male counterparts to prove that I am just as capable,” she remarks.

Often being the only woman in the local industry made her doubt herself and feel like she didn’t belong. She says it was challenging because sometimes she found herself trying to talk, walk, and act like her male counterparts just to fit in. However, staying true to herself, being authentic, and having confidence in her abilities has helped her.

Greatest accomplishments

She says one of her greatest accomplishments thus far was taking a leap of faith by resigning and starting her own tech business. “The business was officially registered in February 2020, shortly before we were affected by the COVID-19 pandemic. Despite the challenges, the business has been growing steadily, starting with only two children, and now serving over 50 across all our programmes.”

Another highlight for her was being selected as one of the Top 10 MTN SA Foundation Women in ICT Challenge female entrepreneurs. 

While she talks proudly about these successes, Chabeli is of the opinion that starting your own business is not for the faint-hearted. “It requires a lot of patience, hard work, and passion. You must prepare yourself for long hours and sacrificing time with family and friends. Discipline is also an important aspect when running your own business."

Women in the inventing space

“I strongly encourage women who want to enter the innovation space to do so, because there is a great need. We must raise a next generation of innovators, who can solve their own problems through innovative ideas,” she says.

Chabeli elaborates, “Seeing an African child succeed was always my motivation to work hard and strive for success, especially in the areas of literacy, numeracy, and digital skills, which are all valuable competencies for inventing new things. It inspired me to lend a helping hand in bridging the skills gap that our country is facing.”

News Archive

Nuclear Medicine on the forefront of cancer research
2017-07-10

Description: Nuclear Medicine on the forefront of cancer research Tags: Nuclear Medicine, cancer research, Dr Je’nine Horn-Lodewyk’s, tumour detection method, cancer, Department of Nuclear Medicine 

Dr Je’nine Horn-Lodewyk’s tumour detection method
could be the cost-effective breakthrough needed to decrease
the mortality rate in breast cancer patients.
Photo: Anja Aucamp

The field of Nuclear Medicine in South Africa and the rest of the world are expanding rapidly due to the development of hybrid cameras and new radiopharmaceuticals. These developments have a huge impact on the diagnosis and therapy of cancer.

The most advanced of these cameras, Positron emission tomography combined with normal CTs (PETCT), are not yet widely available in South Africa due to the cost of the cameras and the radiopharmaceuticals. A more cost-effective alternative can be of great benefit. To achieve this, the focus should be on developing new radiopharmaceuticals that can be used with the current cost-effective gamma cameras, according to University of the Free State researcher, Dr Je’nine Horn-Lodewyk from the Department of Nuclear Medicine.

Fluorodeoxyglucose (18F-FDG), a radiolabelled glucose analogue, is currently the radiopharmaceutical most commonly used in PET/CT imaging for mainly oncology indications. Although it is considered the gold standard for imaging in several malignancies, it does have certain disadvantages. An 18F-FDG PET/CT diagnostic imaging study can cost between R25 000 and R35 000 for a single patient in the private sector. The 18F-FDG is also more radioactive, which requires much stricter handling and shielding to avoid high radiation dosages to staff and patients.

Successful research potential innovative solution
In the search for the ideal radiopharmaceutical for tumour detection, the South African National Nuclear Energy Corporation (Necsa) developed a local synthesis process for ethylenedicysteine-deoxyglucose (EC-DG). EC-DG is also a glucose analogue similar to FDG. They succeeded in labelling the compound with Technetium-99-metastable-pertechnetate (99mTcO4-), the most common nuclear medicine isotope used for approximately 95% of nuclear medicine procedures, creating 99mTc-EC-DG.

In partnership with Dr Horn-Lodewyk, this compound was successfully used in various animal models and clinical scenarios, resulting in approval by the Medicine Control Council to use it in a human study. Research is also planned in order to investigate diagnostic accuracy in other cancers like lymphoma.  The end result of this research can produce a radiopharmaceutical that is cost effective, does not require the use of costly specialised equipment, has no significant side-effects, no special patient preparation, renders late imaging possible, and has decreased radiation risks.

Dr Horn-Lodewyk is grateful for the support of her mentor, Prof Anton Otto, as well as Dr Gert Engelbrecht, Head of the Department of Nuclear Medicine, Prof Jan Rijn Zeevaart from North-West University’s Preclinical Drug Development Platform and Necsa, and Judith Wagener from Necsa. This innovative research would also not have been possible without the financial assistance of Dr Glen Taylor and Eleanor van der Westhuizen in the Directorate of Research Development.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept