Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 April 2023 | Story Leonie Bolleurs | Photo Supplied
“Seeing an African child succeed was always my motivation to work hard and strive for success,” says Masabata Chabeli, founder of NDSH, a newly established coding and robotics skills development programme.

Masabata Chabeli’s journey from teacher to tech entrepreneur led her to establish New Dawn Skills Hub (NDSH), which focuses on developing skills in coding and robotics, building a new generation of artificial intelligence (AI) and fourth industrial revolution (4IR) experts. 

Chabeli is a former UFS lecturer and a graduate of the EBL Institute of Business and Technology, which partners with the UFS Business School on community development, entrepreneurship development, and digital skills development programmes that benefit not only the youth but South Africans at large. 

Through NDSH she aims to bridge the gap between education and industry to from an early age equip pre-schoolers and learners with the skills necessary for success in today’s rapidly evolving technological landscape. 

She believes that when it comes to inventing new things not much has been done to encourage learners to be creative and innovative, especially at school level. “We have a long way to go,” she says.

Even though NDSH is still at an early stage of its development as a coding and robotics skills development service provider, the company already offers a range of programmes, from early childhood development (ECD) programmes for ages six months to Grade R, to a tutoring programme covering mathematics, science and technology.

Discovering her passion

Although she had always been a tech enthusiast, Chabeli never imagined pursuing a career in technology, let alone starting a business. “Teaching has always been my first passion,” she says. “But after more than a decade of teaching, I realised I wasn’t fulfilled. I wanted more, but I didn't know what that was.”

It wasn’t until 2017, when she was one of 45 lecturers from around the country selected to spend a month in China learning about 4IR technologies, including courses on coding and robotics, 3D-printing applications, and intelligent manufacturing, that Chabeli’s interest in tech was piqued. Two years later, she resigned from her position as a lecturer at the University of Free State to start her own tech business – and she hasn't looked back since.

Walking the road with Chabeli was Lesala Khetheng, Business Manager representing the EBL Institute of Business and Technology. Chabeli completed EBL’s Entrepreneurship and Business Literacy Programme and the Women in Digital Business Challenge.

I strongly encourage women who want to enter the innovation space to do so, because there is a great need. We must raise a next generation of innovators, who can solve their own problems through innovative ideas. – Masabata Chabeli
Overcoming the obstacles 

The journey towards achieving one’s dreams is often riddled with obstacles. “As a teacher with no prior business experience, I was ill-prepared for the day-to-day operations of running a business, and I neglected that aspect. However, I was fortunate enough to participate in the Entrepreneur Business Literacy (EBL) Institute mentorship programme in 2021-2022, which taught me about critical business components such as marketing, business management, cashflow, sales, and more.

“Having to prove that ‘I can’ as a black woman in technical fields has also been one of the challenges that I had to overcome. I have had to go above and beyond and work 10 times harder than my male counterparts to prove that I am just as capable,” she remarks.

Often being the only woman in the local industry made her doubt herself and feel like she didn’t belong. She says it was challenging because sometimes she found herself trying to talk, walk, and act like her male counterparts just to fit in. However, staying true to herself, being authentic, and having confidence in her abilities has helped her.

Greatest accomplishments

She says one of her greatest accomplishments thus far was taking a leap of faith by resigning and starting her own tech business. “The business was officially registered in February 2020, shortly before we were affected by the COVID-19 pandemic. Despite the challenges, the business has been growing steadily, starting with only two children, and now serving over 50 across all our programmes.”

Another highlight for her was being selected as one of the Top 10 MTN SA Foundation Women in ICT Challenge female entrepreneurs. 

While she talks proudly about these successes, Chabeli is of the opinion that starting your own business is not for the faint-hearted. “It requires a lot of patience, hard work, and passion. You must prepare yourself for long hours and sacrificing time with family and friends. Discipline is also an important aspect when running your own business."

Women in the inventing space

“I strongly encourage women who want to enter the innovation space to do so, because there is a great need. We must raise a next generation of innovators, who can solve their own problems through innovative ideas,” she says.

Chabeli elaborates, “Seeing an African child succeed was always my motivation to work hard and strive for success, especially in the areas of literacy, numeracy, and digital skills, which are all valuable competencies for inventing new things. It inspired me to lend a helping hand in bridging the skills gap that our country is facing.”

News Archive

Researcher part of project aimed at producing third-generation biofuels from microalgae in Germany
2016-05-09

Description: Novagreen bioreactor  Tags: Novagreen bioreactor

Some of the researchers and technicians among the tubes of the Novagreen bioreactor (Prof Grobbelaar on left)

A researcher from the University of the Free State (UFS), Prof Johan Grobbelaar, was invited to join a group of scientists recently at the Institute for Bio- and Geo-Sciences of the Research Centre Jülich, in Germany, where microalgae are used for lipid (oil) production, and then converted to kerosene for the aviation industry.

The project is probably the first of its kind to address bio-fuel production from microalgae on such a large scale.  

“The potential of algae as a fuel source is undisputed, because it was these photoautotrophic micro-organisms that were fixing sunlight energy into lipids for millions of years, generating the petroleum reserves that modern human civilisation uses today.  However, these reserves are finite, so the challenge is marrying biology with technology to produce economically-competitive fuels without harming the environment and compromising our food security.  The fundamental ability that microalgae have to produce energy-rich biomass from CO2, nutrients, and sunlight through photosynthesis for biofuels, is commonly referred to as the Third-Generation Biofuels (3G),” said Prof Grobbelaar.

The key compounds used for bio-diesel and kerosene production are the lipids and, more particularly, the triacylglyserols commonly referred to as TAGs.  These lipids, once extracted, need to be trans-esterified for biodiesel, while a further “cracking” step is required to produce kerosene.  Microalgae can store energy as lipids and/or carbohydrates. However, for biofuels, microalgae with high TAG contents are required.  A number of such algae have been isolated, and lipid contents of up to 60% have been achieved.

According to Prof Grobbelaar, the challenge is large-scale, high-volume production, since it is easy to manipulate growth conditions in the laboratory for experimental purposes.  

The AUFWIND project (AUFWIND, a German term for up-current, or new impetus) in Germany consists of three different commercially-available photobioreactor types, which are being compared for lipid production.

Description: Lipid rich chlorella Tags: Lipid rich chlorella

Manipulated Chlorella with high lipid contents (yellow) in the Novagreen bioreactor

The photobioreactors each occupies 500 m2 of land surface area, are situated next to one another, and can be monitored continuously.  The three systems are from Novagreen, IGV, and Phytolutions.  The Novagreen photobioreactor is housed in a glass house, and consist of interconnected vertical plastic tubes roughly 150 mm in diameter. The Phytolutions system is outdoors, and consists of curtains of vertical plastic tubes with a diameter of about 90 mm.  The most ambitious photobioreactor is from IGV, and consists of horizontally-layered nets housed in a plastic growth hall, where the algae are sprayed over the nets, and allowed to grow while dripping from one net to the next.

Prof Grobbelaar’s main task was to manipulate growth conditions in such a way that the microalgae converted their stored energy into lipids, and to establish protocols to run the various photobioreactors. This was accomplished in just over two months of intensive experimentation, and included modifications to the designs of the photobioreactors, the microalgal strain selection, and the replacement of the nutrient broth with a so-called balanced one.

Prof Grobbelaar has no illusions regarding the economic feasibility of the project.  However, with continued research, optimisation, and utilisation of waste resources, it is highly likely that the first long-haul flights using microalgal-derived kerosene will be possible in the not-too-distant future.

Prof Grobbelaar from the Department of Plant Sciences, although partly retired, still serves on the editorial boards of several journals. He is also involved with the examining of PhDs, many of them from abroad.  In addition, he assisted the Technology Innovation Agency of South Africa in the formulation of an algae-biotechnology and training centre.  “The chances are good that such a centre will be established in Upington, in the Northern Cape,” Prof Grobbelaar said.

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept