Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 April 2023 | Story Leonie Bolleurs | Photo Supplied
“Seeing an African child succeed was always my motivation to work hard and strive for success,” says Masabata Chabeli, founder of NDSH, a newly established coding and robotics skills development programme.

Masabata Chabeli’s journey from teacher to tech entrepreneur led her to establish New Dawn Skills Hub (NDSH), which focuses on developing skills in coding and robotics, building a new generation of artificial intelligence (AI) and fourth industrial revolution (4IR) experts. 

Chabeli is a former UFS lecturer and a graduate of the EBL Institute of Business and Technology, which partners with the UFS Business School on community development, entrepreneurship development, and digital skills development programmes that benefit not only the youth but South Africans at large. 

Through NDSH she aims to bridge the gap between education and industry to from an early age equip pre-schoolers and learners with the skills necessary for success in today’s rapidly evolving technological landscape. 

She believes that when it comes to inventing new things not much has been done to encourage learners to be creative and innovative, especially at school level. “We have a long way to go,” she says.

Even though NDSH is still at an early stage of its development as a coding and robotics skills development service provider, the company already offers a range of programmes, from early childhood development (ECD) programmes for ages six months to Grade R, to a tutoring programme covering mathematics, science and technology.

Discovering her passion

Although she had always been a tech enthusiast, Chabeli never imagined pursuing a career in technology, let alone starting a business. “Teaching has always been my first passion,” she says. “But after more than a decade of teaching, I realised I wasn’t fulfilled. I wanted more, but I didn't know what that was.”

It wasn’t until 2017, when she was one of 45 lecturers from around the country selected to spend a month in China learning about 4IR technologies, including courses on coding and robotics, 3D-printing applications, and intelligent manufacturing, that Chabeli’s interest in tech was piqued. Two years later, she resigned from her position as a lecturer at the University of Free State to start her own tech business – and she hasn't looked back since.

Walking the road with Chabeli was Lesala Khetheng, Business Manager representing the EBL Institute of Business and Technology. Chabeli completed EBL’s Entrepreneurship and Business Literacy Programme and the Women in Digital Business Challenge.

I strongly encourage women who want to enter the innovation space to do so, because there is a great need. We must raise a next generation of innovators, who can solve their own problems through innovative ideas. – Masabata Chabeli
Overcoming the obstacles 

The journey towards achieving one’s dreams is often riddled with obstacles. “As a teacher with no prior business experience, I was ill-prepared for the day-to-day operations of running a business, and I neglected that aspect. However, I was fortunate enough to participate in the Entrepreneur Business Literacy (EBL) Institute mentorship programme in 2021-2022, which taught me about critical business components such as marketing, business management, cashflow, sales, and more.

“Having to prove that ‘I can’ as a black woman in technical fields has also been one of the challenges that I had to overcome. I have had to go above and beyond and work 10 times harder than my male counterparts to prove that I am just as capable,” she remarks.

Often being the only woman in the local industry made her doubt herself and feel like she didn’t belong. She says it was challenging because sometimes she found herself trying to talk, walk, and act like her male counterparts just to fit in. However, staying true to herself, being authentic, and having confidence in her abilities has helped her.

Greatest accomplishments

She says one of her greatest accomplishments thus far was taking a leap of faith by resigning and starting her own tech business. “The business was officially registered in February 2020, shortly before we were affected by the COVID-19 pandemic. Despite the challenges, the business has been growing steadily, starting with only two children, and now serving over 50 across all our programmes.”

Another highlight for her was being selected as one of the Top 10 MTN SA Foundation Women in ICT Challenge female entrepreneurs. 

While she talks proudly about these successes, Chabeli is of the opinion that starting your own business is not for the faint-hearted. “It requires a lot of patience, hard work, and passion. You must prepare yourself for long hours and sacrificing time with family and friends. Discipline is also an important aspect when running your own business."

Women in the inventing space

“I strongly encourage women who want to enter the innovation space to do so, because there is a great need. We must raise a next generation of innovators, who can solve their own problems through innovative ideas,” she says.

Chabeli elaborates, “Seeing an African child succeed was always my motivation to work hard and strive for success, especially in the areas of literacy, numeracy, and digital skills, which are all valuable competencies for inventing new things. It inspired me to lend a helping hand in bridging the skills gap that our country is facing.”

News Archive

Research contributes to improving quality of life for cancer patients
2016-11-21

Description: Inorganic Chemistry supervisors  Tags: Inorganic Chemistry supervisors

Inorganic Chemistry supervisors in the Radiopharmacy
Laboratory during the preparation of a typical complex
mixture to see how fast it reacts. Here are, from the left,
front: Dr Marietjie Schutte-Smith, Dr Alice Brink
(both scholars from the UFS Prestige
Scholar Programme), and Dr Truidie Venter (all three
are Thuthuka-funded researchers).
Back: Prof André Roodt and Dr Johan Venter.
Photo: Supplied

Imagine that you have been diagnosed with bone cancer and only have six months to live. You are in a wheelchair because the pain in your legs is so immense that you can’t walk anymore – similar to a mechanism eating your bones from the inside.

You are lucky though, since you could be injected with a drug to control the pain so effective that you will be able to get out of the wheelchair within a day-and-a-half and be able to walk again. Real-life incidents like these provide intense job satisfaction to Prof André Roodt, Head of Inorganic Chemistry at the University of the Free State (UFS). The research, which is conducted by the Inorganic Group at the UFS, contributes greatly to the availability of pain therapy that does not involve drugs, but improves the quality of life for cancer patients.

The research conducted by the Inorganic Group under the leadership of Prof Roodt, plays a major role in the clever design of model medicines to better detect and treat cancer.

The Department of Chemistry is one of approximately 10 institutions worldwide that conducts research on chemical mechanisms to identify and control cancer. “The fact that we are able to cooperate with the Departments of Nuclear Medicine and Medical Physics at the UFS, the Animal Research Centre, and other collaborators in South Africa and abroad, but especially the methodology we utilise to conduct research (studying the chemical manner in which drugs are absorbed in cancer as well as the time involved), enhances the possibility of making a contribution to cancer research,” says Prof Roodt.

Technique to detect cancer spots on bone
According to the professor, there are various ways of detecting cancer in the body. Cancer can, inter alia, be identified by analysing blood, X-rays (external) or through an internal technique where the patient is injected with a radioactive isotope.

Prof Roodt explains: “The doctor suspects that the patient has bone cancer and injects the person with a drug consisting of an isotope (only emits X-rays and does no damage to tissue) that is connected to a phosphonate (similar to those used for osteoporosis). Once the drug is injected, the isotope (Technetium-99m) moves to the spot on the bone where the cancer is located. The gamma rays in the isotope illuminate the area and the doctor can see exactly where treatment should be applied. The Technetium-99m has the same intensity gamma rays as normal X-rays and therefore operates the same as an internal X-ray supply.” With this technique, the doctor can see where the cancer spots are within a few hours.

The same technique can be used to identify inactive parts of the brain in Alzheimer patients, as well as areas of the heart where there is no blood supply or where the heart muscle is dead.

Therapeutic irradiation of cancer
For the treatment of pain connected with cancer, the isotope Rhenium-186 is injected. Similar to the manner in which the Technetium-99m phosphonate compound is ingested into the body, the Rhenium-186 phosphonate travels to the cancer spots. Patients thus receive therapeutic irradiation – a technique known as palliative therapy, which is excellent for treating pain. A dosage of this therapy usually lasts for about two months.

The therapy is, however, patient specific. The dosages should correspond with the occurrence and size of cancer spots in the patient’s body. First, the location of the cancer will be determined by means of a technetium scan. After that, the size of the area where the cancer occurs has to be determined. The dosage for addressing total pain distribution will be calculated according to these results.

Technique to detect cancer spots on soft tissue
Another technique to detect cancer as spots on bone or in soft tissue and organs throughout the body is by utilising a different type of irradiation, a so-called PET isotope. The Fluor-18 isotope is currently used widely, and in Pretoria a machine called a cyclotron was produced by Dr Gerdus Kemp, who is a former PhD graduate from the Inorganic Research Group. The F-18 is then hidden within a glucose molecule and a patient will be injected with the drug after being tranquillised and after the metabolism has been lowered considerably. The glucose, which is the ‘food' that cancer needs to grow, will then travel directly to the cancer area and the specific area where the cancer is located will thus be traced and ‘illuminated’ by the Fluor-18, which emits its own 'X-rays'.

In the late 80s, Prof Roodt did his own postdoctoral study on this research in the US. He started collaborating with the Department of Nuclear Medicine at the UFS in the early 90s, when he initiated testing for this research.

Through their research of more than 15 years, the Inorganic Group in the Department of Chemistry has made a major contribution to cancer research. Research on mechanisms for the detection of cancer, by designing new clever chemical agents, and the chemical ways in which these agents are taken up in the body, especially contributes to the development in terms of cancer therapy and imaging, and has been used by a number of hospitals in South Africa.

The future holds great promise
Prof Roodt and his team are already working on a bilateral study between the UFS and Kenya. It involves the linking of radio isotopes, as mentioned above, to known natural products (such as rooibos tea), which possess anti-cancer qualities.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept