Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
28 April 2023 | Story Leonie Bolleurs | Photo Supplied
Schae-Lee Olckers’
UFS PhD student and food scientist Schae-Lee Olckers’ research could contribute to a stable supply of good quality wheat and bread, even in the face of climate change.

Follow your passion in order to find your purpose. This is the mantra of food scientist and University of the Free State (UFS) PhD student Schae-Lee Olckers, whose research is set to improve wheat quality by identifying which types of wheat are better able to tolerate stress, and which proteins are most important for producing high-quality bread. 
 
“By grasping this, it is possible to ensure that we continue to have a stable supply of good quality wheat and bread, even in the face of climate change,” says Olckers, who believes wheat is one of the most important food grains in the human diet, and one of the most important staple cereal crops in the world.

Her PhD study, ‘The influence of abiotic stress on gluten protein and baking quality in bread wheat’, under the supervision of Dr Angie van Biljon and Prof Maryke Labuschagne in the Department of Plant Sciences, and Prof Garry Osthoff in the Department of Microbiology and Biochemistry, is investigating how different levels of heat and drought stress – mostly due to climate change – affect the gluten protein composition of high-yield bread wheat.

Olckers is a food scientist at StartWell Foods (Pty) Ltd, a non-profit organisation that produces high-quality extrusion products for feeding schemes around the country. The products help to eliminate stunted growth among children.

Improving wheat breeding programmes
This research could help us find ways to adapt to climate change and continue to produce high-quality wheat and bread for people around the world. – Schae-Lee Olckers

Her research focuses on examining different types of wheat and investigating how proteins are affected by stressors like heat and drought, to understand how these stressors impact the quality of bread. She uses new proteomic methods to look at the different proteins in the wheat flour, to gain a better appreciation of how gluten proteins react to stress.

In this study Olckers is able to see how the proteins change in the various wheat cultivars, helping us to understand how the different types of wheat perform in baking, and how the proteins affect the final product.

She collaborates with the International Maize and Wheat Improvement Center (CIMMYT) in Mexico, that releases new wheat cultivars for developing countries. Their aim is to develop wheat cultivars that maintain their quality in different environments.  To investigate the performance and characteristics of the seeds, both in the field and in the laboratory, CIMMYT did the field trials, quality assessment, and supplied the seeds for high-performance liquid chromatography (HPLC) and proteomics analysis. 

Finding ways to adapt to climate change

She believes that understanding how these stressors impact the production of bread-baking quality in wheat will help scientists gain important insights into how climate change affects our food supply. 

“Taking into consideration the current and projected intensifying heat and water deficit stresses, it is crucial to improve the understanding of these phenomena in order to implement new breeding strategies for sustainable wheat quality. This research could help us find ways to adapt to climate change and continue to produce high-quality wheat and bread for people around the world,” Olckers says. 

News Archive

Short course in Applied Conservation Genetics developed at UFS
2014-08-22

 

Photo: en.wikipedia.org

During discussions with stakeholders in Kenya in 2013, a need was identified for training in conservation genetics with an African emphasis. In answer, Prof Paul Grobler from the Department of Genetics developed a short course in Applied Conservation Genetics.

Some of the phenomena studied in this field include:
• hybridisation between species such as blue wildebeest and black wildebeest,
• wildlife poaching and
• potential inbreeding in small game-farm populations.

From the onset, the course has been developed as an international venture. To this end, Dr Frank Zachos from the Natural History Museum in Vienna, Austria, committed himself to the project. Dr Jamie Roberts from the Department of Fish and Wildlife Conservation at Virginia Tech University in the USA also came on board. Both pledged their time and expertise to the course – without any financial gain.

Subsequently, our Department of Genetics presented this short course at the National Zoological Gardens (NZG) in Pretoria earlier this year. The team of presenters included Prof Grobler, Dr Zachos and Dr Roberts. They were joined by Dr Desire Dalton from the Research Division of the NZG, who added valuable practical experience to the presentations.

The course assumes a degree of prior knowledge of population and molecular genetics. A strong emphasis is placed on practical applications. The programme includes a strong component of statistics and hands-on training in the many approaches and software used in population genetics.

The group that attended the course included a contingent from the Namibian Ministry of Environment and Tourism, Dutch postgraduate students currently working at the University of Johannesburg and delegates from across South Africa.

This successful meeting followed an experimental first round of the course presented in Nairobi during 2013, attended by representatives from Kenya, Malawi, Nigeria, Mexico and Belgium.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept