Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
26 April 2023 | Story Valentino Ndaba | Photo Charl Devenish
Faculty of Law doctoral recipients produce impactful research and increase the number of UFS academic staff with PhDs. From the left; Dr Martie Bloem; Dr Kudzai Mpofu, and Dr Anthea-Lee September-Van Huffel.

Our vision is that by 2034, the proportion of academic staff with PhDs will increase to 75%. With each graduation ceremony, the University of the Free State (UFS) is moving closer to making this a reality. Our aspirations of becoming a research-led institution that prides itself on academic excellence, quality, and impact, are outlined in Vision 130, which is the strategic intent to reposition the UFS for its 130th anniversary.

This year’s April graduation saw a general total of 94 PhDs being conferred, which is a significant growth compared to the 84 conferred during last year’s April graduation ceremonies. 

On 20 April 2023, three of the ten candidates conferred the new title of ‘Dr’ by the Faculty of Law, were UFS academic staff. Dr Kudzai Mpofu (Research Assistant in the Department of Mercantile Law), Dr Anthea-Lee September-Van Huffel (Private Law lecturer), and Dr Martie Bloem (Private Law lecturer) were just a few of many UFS academics to receive their doctoral degrees this autumn.

Saving small businesses through quality research 

Dr Mpofu's study contributes to the development of business rescue legislation aimed at restructuring small businesses in financial distress. He used a comparative research methodology to evaluate the business rescue models of small enterprises in Kenya, the United Kingdom, the United States, and South Africa. 

In his thesis, titled: A business rescue model for unincorporated business entities in South Africa, he proposed a business rescue model that provides eligibility criteria, a procedural framework consisting of a step-by-step rescue process, and an institutional framework addressing the roles/duties of the debtor, business rescue practitioner, and the judiciary in ensuring that unincorporated business entities are rehabilitated.

Part of the Vision 130 plan is to enhance research capacity and capabilities by placing a greater emphasis on the balance between research, teaching, and learning for impact. Dr Mpofu is driven by the desire to make an impact.
“I am motivated to use my expertise and research to make a positive impact on society. I look forward to applying my research findings to real-world problems, engaging with policy makers, industry professionals, and community organisations, and making meaningful contributions to society through my academic work,” he said.

Interrogating government’s regulation of South Africa’s natural resources 

Dr September-Van Huffel’s research study, titled: A critical investigation of state custodianship and its implications for the South African property regime, evaluates the potential for change in the interaction between the government as public trustee or custodian and private property holders as far as land reform is concerned.

Her thesis investigates a state custodianship approach to rural agricultural land, particularly within the context of land reform initiatives and increased regulatory control over natural resources such as water, minerals, and land for public interest; and the efficacy of the construct of state custodianship should it be applied to land as a natural resource. Her research considers the socio-political basis for the legal construct of state custodianship, and whether this novel construct has proven capable of delivering transformative outcomes such as equitable redistribution.

Advocating for diversity to transform the legal system

With her thesis, titled: The requirement of ‘fit and proper’ for the legal profession: a South African perspective, Dr Bloem challenges the entry criteria for practising law.

“With this thesis, I challenge the current understanding and application of the ‘fit and proper’ requirement for admission to legal practice, finding that it is superficial and one-dimensional. I argue for the re-imagining of the requirement to allow for diversity and for the critical thinking needed to enable transformation of the legal profession.”

Dr Bloem adds, “The study draws a direct link between objectives such as public interest, access to justice, and social justice. I also propose that being ‘fit and proper’ should be a continuous responsibility of all legal professionals and informed by constitutional values, not mere compliance with fixed rules of conduct. With this thesis, I intend to contribute to the transformation of the legal profession as well as legal education.”

News Archive

Fight against Ebola virus requires more research
2014-10-22

 

Dr Abdon Atangana
Photo: Ifa Tshishonge
Dr Abdon Atangana, a postdoctoral researcher in the Institute for Groundwater Studies at the University of the Free State (UFS), wrote an article related to the Ebola virus: Modelling the Ebola haemorrhagic fever with the beta-derivative: Deathly infection disease in West African countries.

“The filoviruses belong to a virus family named filoviridae. This virus can cause unembellished haemorrhagic fever in humans and nonhuman monkeys. In literature, only two members of this virus family have been mentioned, namely the Marburg virus and the Ebola virus. However, so far only five species of the Ebola virus have been identified, including:  Ivory Coast, Sudan, Zaire, Reston and Bundibugyo.

“Among these families, the Ebola virus is the only member of the Zaire Ebola virus species and also the most dangerous, being responsible for the largest number of outbreaks.

“Ebola is an unusual, but fatal virus that causes bleeding inside and outside the body. As the virus spreads through the body, it damages the immune system and organs. Ultimately, it causes the blood-clotting levels in cells to drop. This leads to severe, uncontrollable bleeding.

Since all physical problems can be modelled via mathematical equation, Dr Atangana aimed in his research (the paper was published in BioMed Research International with impact factor 2.701) to analyse the spread of this deadly disease using mathematical equations. We shall propose a model underpinning the spread of this disease in a given Sub-Saharan African country,” he said.

The mathematical equations are used to predict the future behaviour of the disease, especially the spread of the disease among the targeted population. These mathematical equations are called differential equation and are only using the concept of rate of change over time.

However, there is several definitions for derivative, and the choice of the derivative used for such a model is very important, because the more accurate the model, the better results will be obtained.  The classical derivative describes the change of rate, but it is an approximation of the real velocity of the object under study. The beta derivative is the modification of the classical derivative that takes into account the time scale and also has a new parameter that can be considered as the fractional order.  

“I have used the beta derivative to model the spread of the fatal disease called Ebola, which has killed many people in the West African countries, including Nigeria, Sierra Leone, Guinea and Liberia, since December 2013,” he said.

The constructed mathematical equations were called Atangana’s Beta Ebola System of Equations (ABESE). “We did the investigation of the stable endemic points and presented the Eigen-Values using the Jacobian method. The homotopy decomposition method was used to solve the resulted system of equations. The convergence of the method was presented and some numerical simulations were done for different values of beta.

“The simulations showed that our model is more realistic for all betas less than 0.5.  The model revealed that, if there were no recovery precaution for a given population in a West African country, the entire population of that country would all die in a very short period of time, even if the total number of the infected population is very small.  In simple terms, the prediction revealed a fast spread of the virus among the targeted population. These results can be used to educate and inform people about the rapid spread of the deadly disease,” he said.

The spread of Ebola among people only occurs through direct contact with the blood or body fluids of a person after symptoms have developed. Body fluid that may contain the Ebola virus includes saliva, mucus, vomit, faeces, sweat, tears, breast milk, urine and semen. Entry points include the nose, mouth, eyes, open wounds, cuts and abrasions. Note should be taken that contact with objects contaminated by the virus, particularly needles and syringes, may also transmit the infection.

“Based on the predictions in this paper, we are calling on more research regarding this disease; in particular, we are calling on researchers to pay attention to finding an efficient cure or more effective prevention, to reduce the risk of contamination,” Dr Atangana said.


We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept