Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 April 2023 | Story Leonie Bolleurs | Photo Supplied
Corlé van der Walt received her honours degree in mathematics and applied mathematics. She wants to show students that mathematics is not necessarily difficult, but that it is logical and practical.

Mathematics is undeniably part of the world – from telling time, buying groceries, to manufacturing clothing sizes, and everything in between.

This is the view of Corlé van der Walt, Junior Lecturer in the Department of Mathematics and Applied Mathematics at the University of the Free State (UFS), who received her honours degree in mathematics and applied mathematics (with distinction) at the university’s April 2023 graduation ceremonies. 

The focus of her honours was on applied mathematics, specifically optimisation and dynamical systems. “These subjects link to my undergraduate degree, which is in industrial engineering,” says Van der Walt, who has always enjoyed and excelled in mathematics for as long as she can remember. 

Maths = skills +

She believes that mathematics is important because it helps us describe and value ourselves. “But still, mathematics is more than just the skills we learn; in the words of Albert Einstein, "Mathematics is, in its way, the poetry of logical ideas".

She says that mathematics is also the foundation for other sciences, such as physics, chemistry, and engineering. “Mathematics paves the way for all other forms of science. Without the computational groundwork, it will not be possible to do physics, chemistry, engineering, or any other form of science,” she adds, remarking that we will not be able to make scientific or technological progress.

“This is where I come in; I want to teach young upcoming students’ mathematics and the power of it. I want to show students that mathematics is not necessarily difficult, but that it is logical and practical. With my current qualification, I have already been appointed as a junior lecturer and I teach precalculus to university students who would like to take calculus,” she says.

A balancing act

Although she enjoys her work, Van der Walt finds it challenging to juggle work and studies. But she overcomes these obstacles by prioritising tasks and celebrating small achievements. Her motivation also comes from the joy of seeing her students understand concepts that they previously struggled with. 

With plans to complete her master's degree in the next two years and commencing her PhD studies, Van der Walt is committed to teaching the power of mathematics to upcoming students.

News Archive

UFS study on cell development in top international science journal
2008-09-16

A study from the University of the Free State (UFS) on how the change in the packaging of DNA with cell development influenced the expression of genes, will be published in this week’s early edition of the prestigious international, peer-reviewed science journal, the Proceeding of the National Academy of Sciences of the USA (PNAS).

The PNAS journal has an impact factor of 10, which means that studies published in the journal are, on average, referred to by ten other scientific studies in a two year period. The South African Journal of Science, by comparison, has an impact factor of 0.7.

The UFS study, funded by the Wellcome Trust and the National Research Foundation (NRF), looked at how the change in the packaging of DNA with cell development influenced the expression of genes. It is very relevant to research on stem cells, an area of medicine that studies the possible use of undifferentiated cells to replace damaged tissue.

Prof. Hugh Patterton, of the Department of Microbial, Biochemical and Food Biotechnology at the UFS, who led the study, said: "We are extremely proud of this study. It was conceived in South Africa, it was performed in South Africa, the data were analysed in South Africa, and it was published from South Africa."

When a gene is expressed, the information encoded in the gene is used to manufacture a specific protein. In eukaryotes, which include humans, there is approximately 1m of DNA, containing the genes, in every cell. This length of DNA has to fit into a cell nucleus with a diameter of only about 10 micrometer. In order to fit the DNA into such a small volume, eukaryotic cells wrap their DNA onto successive protein balls, termed nucleosomes. Strings of nucleosomes, resembling a bead of pearls, is folded into a helix to form a chromatin fiber. The study from the UFS investigated how the binding of a specific protein, termed a linker histone, that binds to the length of DNA between nucleosomes, influenced the formation of the chromatin fiber and also the activity of genes.

"We found that the linker histone bound to chromatin in yeast, which we use as a model eukaryote, under conditions where virtually all the genes in the organism were inactive. It was widely believed that the binding of the linker histone caused the inactivation of genes. We studied the relationship between the amount of linker histone bound in the vicinity of each gene and the expression of that gene for all the genes in yeast, using genomic techniques. We made the surprising discovery that even through the linker histone preferentially bound to genes under conditions where the genes were shut off, this inactivation of genes was not caused by the binding of the linker histone and folding of the chromatin,” said Prof. Patterton.

He said: “Instead our data strongly suggested that the observed anti-correlation was due to the movement of enzymes along the DNA molecule, involved in processing the information in genes for the eventual manufacture of proteins. This movement of enzymes displaced the linker histones from the DNA. This finding now requires a rethink on aspects of how packaging of DNA influences gene activity."

Prof. Patterton said that his research group, using the Facility for Genomics and Proteomics as well as the Bioinformatics Node at the UFS, was currently busy with follow-up studies to understand how other proteins in nucleosomes affected the activities of genes, as well as with projects to understand how chemicals found in red wine and in green tea extended lifespan. "We are certainly having a marvelous time trying to understand the fundamental mechanisms of life, and the UFS is an exciting place to be if one was interested in studying life at the level of molecules," he said.


Media Release
Issued by: Lacea Loader
Assistant Director: Media Liaison
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: loaderl.stg@ufs.ac.za  
18 September 2008
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept