Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
24 April 2023 | Story Leonie Bolleurs | Photo Supplied
Corlé van der Walt received her honours degree in mathematics and applied mathematics. She wants to show students that mathematics is not necessarily difficult, but that it is logical and practical.

Mathematics is undeniably part of the world – from telling time, buying groceries, to manufacturing clothing sizes, and everything in between.

This is the view of Corlé van der Walt, Junior Lecturer in the Department of Mathematics and Applied Mathematics at the University of the Free State (UFS), who received her honours degree in mathematics and applied mathematics (with distinction) at the university’s April 2023 graduation ceremonies. 

The focus of her honours was on applied mathematics, specifically optimisation and dynamical systems. “These subjects link to my undergraduate degree, which is in industrial engineering,” says Van der Walt, who has always enjoyed and excelled in mathematics for as long as she can remember. 

Maths = skills +

She believes that mathematics is important because it helps us describe and value ourselves. “But still, mathematics is more than just the skills we learn; in the words of Albert Einstein, "Mathematics is, in its way, the poetry of logical ideas".

She says that mathematics is also the foundation for other sciences, such as physics, chemistry, and engineering. “Mathematics paves the way for all other forms of science. Without the computational groundwork, it will not be possible to do physics, chemistry, engineering, or any other form of science,” she adds, remarking that we will not be able to make scientific or technological progress.

“This is where I come in; I want to teach young upcoming students’ mathematics and the power of it. I want to show students that mathematics is not necessarily difficult, but that it is logical and practical. With my current qualification, I have already been appointed as a junior lecturer and I teach precalculus to university students who would like to take calculus,” she says.

A balancing act

Although she enjoys her work, Van der Walt finds it challenging to juggle work and studies. But she overcomes these obstacles by prioritising tasks and celebrating small achievements. Her motivation also comes from the joy of seeing her students understand concepts that they previously struggled with. 

With plans to complete her master's degree in the next two years and commencing her PhD studies, Van der Walt is committed to teaching the power of mathematics to upcoming students.

News Archive

Nanotechnology breakthrough at UFS
2010-08-19

 Ph.D students, Chantel Swart and Ntsoaki Leeuw


Scientists at the University of the Free State (UFS) made an important breakthrough in the use of nanotechnology in medical and biological research. The UFS team’s research has been accepted for publication by the internationally accredited Canadian Journal of Microbiology.

The UFS study dissected yeast cells exposed to over-used cooking oil by peeling microscopically thin layers off the yeast cells through the use of nanotechnology.

The yeast cells were enlarged thousands of times to study what was going on inside the cells, whilst at the same time establishing the chemical elements the cells are composed of. This was done by making microscopically small surgical incisions into the cell walls.

This groundbreaking research opens up a host of new uses for nanotechnology, as it was the first study ever in which biological cells were surgically manipulated and at the same time elemental analysis performed through nanotechnology. According to Prof. Lodewyk Kock, head of the Division Lipid Biotechnology at the UFS, the study has far reaching implications for biological and medical research.

The research was the result of collaboration between the Department of Microbial, Biochemical and Food Biotechnology, the Department of Physics (under the leadership of Prof. Hendrik Swart) and the Centre for Microscopy (under the leadership of Prof.Pieter van Wyk).

Two Ph.D. students, Chantel Swart and Ntsoaki Leeuw, overseen by professors Kock and Van Wyk, managed to successfully prepare yeast that was exposed to over-used cooking oil (used for deep frying of food) for this first ever method of nanotechnological research.

According to Prof. Kock, a single yeast cell is approximately 5 micrometres long. “A micrometre is one millionth of a metre – in laymen’s terms, even less than the diameter of a single hair – and completely invisible to the human eye.”

Through the use of nanotechnology, the chemical composition of the surface of the yeast cells could be established by making a surgical incision into the surface. The cells could be peeled off in layers of approximately three (3) nanometres at a time to establish the effect of the oil on the yeast cell’s composition. A nanometre is one thousandth of a micrometre.

Each cell was enlarged by between 40 000 and 50 000 times. This was done by using the Department of Physics’ PHI700 Scanning Auger Nanoprobe linked to a Scanning Electron Microscope and Argon-etching. Under the guidance of Prof. Swart, Mss. Swart en Leeuw could dissect the surfaces of yeast cells exposed to over-used cooking oil. 

The study noted wart like outgrowths - some only a few nanometres in diameter – on the cell surfaces. Research concluded that these outgrowths were caused by the oil. The exposure to the oil also drastically hampered the growth of the yeast cells. (See figure 1)  

Researchers worldwide have warned about the over-usage of cooking oil for deep frying of food, as it can be linked to the cause of diseases like cancer. The over-usage of cooking oil in the preparation of food is therefore strictly regulated by laws worldwide.

The UFS-research doesn’t only show that over-used cooking oil is harmful to micro-organisms like yeast, but also suggests how nanotechnology can be used in biological and medical research on, amongst others, cancer cells.

 

Figure 1. Yeast cells exposed to over-used cooking oil. Wart like protuberances/ outgrowths (WP) is clearly visible on the surfaces of the elongated yeast cells. With the use of nanotechnology, it is possible to peel off the warts – some with a diameter of only a few nanometres – in layers only a few nanometres thick. At the same time, the 3D-structure of the warts as well as its chemical composition can be established.  

Media Release
Issued by: Mangaliso Radebe
Assistant Director: Media Liaison
Tel: 051 401 2828
Cell: 078 460 3320
E-mail: radebemt@ufs.ac.za  
18 August 2010
 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept