Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 August 2023 | Story Rorisang Ramorena | Photo Supplied
Michael Skosana
Michael Skosana is set to leave on 30 August to start the semester on 1 September 2023 at the University of Applied Sciences in Austria.

Michael Skosana, a student on the Bloemfontein Campus of the University of the Free State (UFS), has been selected as the recipient of the 2023 Ernst Mach Grant scholarship exchange programme at the University of Applied Sciences in Austria.

Skosana, currently pursuing his honours in Financial Economics and Investment Management at the UFS, aspires to pursue not only his master's qualification but also his Chartered Financial Analyst (CFA) levels and regulatory exams and ultimately pass his board exams. Skosana is set to leave on 30 August to start the semester on 1 September 2023.

About the grant

The Ernst Mach Grant is a program aimed at students from non-European universities who wish to spend a semester or two at an Austrian University of applied sciences. The Austrian Ministry of Science and Research offers the Ernst Mach Grant to students with non-European citizenship who plan to take up exchanges at an Austrian university.

According to its 2023 – 2028 internationalisation strategy, the UFS aims to integrate international and intercultural dimensions into the university's being, including the formal and informal curriculum. The Office for International Affairs (OIA) enables such comprehensive internationalisation, and specifically its International Scholarships portfolio, under the leadership of Mbali Moiketsi, contributes by liaising with funding bodies for mobility, sharing information about possible opportunities, and supporting students through the process.

The responsibility of the OIA is to ensure that students and staff are exposed to intercultural opportunities as part of their learning curriculum through information sharing. The OIA partners and works with international funding agencies to bring the information to the students and staff and support them through the process.

Skosana's motivation to study abroad is to challenge himself on the spectrum of finance, to learn more about the Austrian and South African economies, and, hopefully, to work in Europe and gain insight before returning home to change the financial landscape of South Africa. He added that the acquired skills will empower and develop the South African financial economy and educate South Africans on financial literacy, investments, and any financial goals they seek knowledge about.”

Furthermore, Skosana encourages students to be more open to knowledge and international experiences by participating in such opportunities. He emphasizes that “students should always want to broaden their intercultural and global competencies beyond academics.”

For more information related to scholarships and opportunities, contact Mbali Moiketsi at the following email moiketsimv@ufs.ac.za

News Archive

Research by experts published in Nature
2011-06-02

 
The members of the research group are, from the left, front: Christelle van Rooyen, Mariana Erasmus, Prof. Esta van Heerden; back: Armand Bester and Prof. Derek Litthauer.
Photo: Gerhard Louw

A  research article on the work by a team of experts at our university, under the leadership of Prof. Esta van Heerden, and counterparts in Belgium and the USA has been published in the distinguished academic journal Nature today (Thursday, 2 June 2011).

The article – Nematoda from the terrestrial deep subsurface of South Africa – sheds more light on life in the form of a small worm living under extreme conditions in deep hot mines. It was discovered 1,3 km under the surface of the earth in the Beatrix Goldmine close to Welkom and is the first multi-cellular organism that was found so far beneath the surface of the earth. The worm (nematode) was found in between a rock face that is between 3 000 and 12 000 years old.

The research can shed some new light on the possibility of life on other planets, previously considered impossible under extreme conditions. It also expands the possibilities into new areas where new organisms may be found.

These small invertebrates live in terrestrial soil subjected to stress almost for 24 hours They live through sunshine, rain, scorching temperatures and freezing conditions. Through time they developed a means to cope with harsh conditions. Terrestrial nematodes (roundworms, not to be confused or related to earthworms) are among those very tough small invertebrates that deal with those conditions everywhere. After insects they are the most dominant multi-cellular (metazoan) species on the planet having a general size of 0,5 to 1 mm and are among the oldest metazoans on the planet, Nature says in a statement on the article.

They inhabit nearly every imaginable habitat form the deep seas to the acid in pitcher . Some nematodes simply eat bacteria and these are the ones we study here. Terrestrial nematodes have developed a survival stage that can take them through hard times (absence of food, extreme temperatures, too little oxygen, crowding, and more).

At the head of the research was Prof. Gaetan Borgonie of the Ghent University in Belgium and a world leader in the discipline of nematode research. He was brought into contact with the South African research leader, Prof. Esta van Heerden, who set up a cooperation agreement with the University of Ghent and Prof. Borgonie. Prof. Van Heerden manages the Extreme Biochemistry group at the UFS and the research was funded by several research grants.

The search for worms began in earnest in 2007, but it was soon clear that the sampling strategy was insufficient. A massive sampling campaign in 2008-2009 in several mines led to the discovery of several nematodes and the new nematode species Halicephalobus mephisto. It is named after the legend of Faust where the devil, also known as the lord of the underworld is called Mephistopheles.

Nature says special filters had to be designed and installed on various boreholes. Unfortunately, there is no easy way of finding a magic formula and designs had to be adapted by trial and error; improving existing designs all the time. The work of the UFS Mechanical Workshop, which manufactured, adapted and helped design it, was crucial in this respect. Filters were left on the holes for varying periods, sometimes for a few hours and sometimes for months. Prof. Derek Litthauer from the UFS played a big role in sampling, filter designs and coming up with ideas for names for the new nematode with Prof. Borgonie.

Research showed that the nematodes can live in the deep for up to 12 000 years. Three students – Armand Bester, Mariana Erasmus and Christelle van Rooyen from the UFS – did the work on this.

The importance of multi-cellular animals living in the ultra-deep subsurface is twofold: The nematodes graze on the existing bacterial population and influence their turnover. Secondly, if more complex multi-cellular organisms can survive in the deep subsurface on earth, this may be good news when looking for life on other planets where the surface is considered too inhospitable (e.g. Mars). Complex life forms can be found in ecosystems previously thought to be uninhabitable. Nature says this expands the possibilities into new areas where new organisms may be discovered.

Future research will focus on selective boreholes to look for more metazoans, so that a better idea of the complexity of the ecosystems there can be obtained. It will also look for metazoans in the deep subsurface on other continents to determine similarities and differences.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept