Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
16 August 2023 | Story Rorisang Ramorena | Photo Supplied
Michael Skosana
Michael Skosana is set to leave on 30 August to start the semester on 1 September 2023 at the University of Applied Sciences in Austria.

Michael Skosana, a student on the Bloemfontein Campus of the University of the Free State (UFS), has been selected as the recipient of the 2023 Ernst Mach Grant scholarship exchange programme at the University of Applied Sciences in Austria.

Skosana, currently pursuing his honours in Financial Economics and Investment Management at the UFS, aspires to pursue not only his master's qualification but also his Chartered Financial Analyst (CFA) levels and regulatory exams and ultimately pass his board exams. Skosana is set to leave on 30 August to start the semester on 1 September 2023.

About the grant

The Ernst Mach Grant is a program aimed at students from non-European universities who wish to spend a semester or two at an Austrian University of applied sciences. The Austrian Ministry of Science and Research offers the Ernst Mach Grant to students with non-European citizenship who plan to take up exchanges at an Austrian university.

According to its 2023 – 2028 internationalisation strategy, the UFS aims to integrate international and intercultural dimensions into the university's being, including the formal and informal curriculum. The Office for International Affairs (OIA) enables such comprehensive internationalisation, and specifically its International Scholarships portfolio, under the leadership of Mbali Moiketsi, contributes by liaising with funding bodies for mobility, sharing information about possible opportunities, and supporting students through the process.

The responsibility of the OIA is to ensure that students and staff are exposed to intercultural opportunities as part of their learning curriculum through information sharing. The OIA partners and works with international funding agencies to bring the information to the students and staff and support them through the process.

Skosana's motivation to study abroad is to challenge himself on the spectrum of finance, to learn more about the Austrian and South African economies, and, hopefully, to work in Europe and gain insight before returning home to change the financial landscape of South Africa. He added that the acquired skills will empower and develop the South African financial economy and educate South Africans on financial literacy, investments, and any financial goals they seek knowledge about.”

Furthermore, Skosana encourages students to be more open to knowledge and international experiences by participating in such opportunities. He emphasizes that “students should always want to broaden their intercultural and global competencies beyond academics.”

For more information related to scholarships and opportunities, contact Mbali Moiketsi at the following email moiketsimv@ufs.ac.za

News Archive

Research eradicates bacteria from avocado facility
2017-01-17

 Description: Listeria monocytogenes Tags: Listeria monocytogenes

Listeria monocytogenes as seen under an electron
microscope. The photo was taken with a transmission
electron microscope at the microscopy unit of the UFS.
Bacteriophages (lollipop-like structures) can be seen
next to the bacterial cells.
Photo: Supplied

“The aim of my project was to identify and characterise the contamination problem in an avocado-processing facility and then to find a solution,” said Dr Amy Strydom, postdoctoral fellow in the Department of Microbial Biochemical and Food Biotechnology at the University of the Free State (UFS).

Her PhD, “Control of Listeria monocytogenes in an Avocado-processing Facility”, aimed to identify and characterise the contamination problem in a facility where avocados were processed into guacamole. Dr Strydom completed her MSc in food science in 2009 at Stellenbosch University and this was the catalyst for her starting her PhD in microbiology in 2012 at the UFS. The research was conducted over a period of four years and she graduated in 2016. The research project was funded by the National Research Foundation.

The opportunity to work closely with the food industry further motivated Dr Strydom to conduct her research. The research has made a significant contribution to a food producer (avocado facility) that will sell products that are not contaminated with any pathogens. The public will then buy food that is safe for human consumption.


What is Listeria monocytogenes?

Listeria monocytogenes is a food-borne pathogenic bacterium. When a food product is contaminated with L. monocytogenes, it will not be altered in ways that are obvious to the consumer, such as taste and smell. When ingested, however, it can cause a wide range of illnesses in people with impaired immune systems. “Risk groups include newborn babies, the elderly, and people suffering from diseases that weaken their immune systems,” Dr Strydom said. The processing adjustments based on her findings resulted in decreased numbers of Listeria in the facility.

The bacteria can also survive and grow at refrigeration temperatures, making them dangerous food pathogens, organisms which can cause illnesses [in humans]. Dr Strydom worked closely with the facility and developed an in-house monitoring system by means of which the facility could test their products and the processing environment. She also evaluated bacteriophages as a biological control agent in the processing facility. Bacteriophages are viruses that can only infect specific strains of bacteria. Despite bacteriophage products specifically intended for the use of controlling L. monocytogenes being commercially available in the food industry, Dr Strydom found that only 26% of the L. monocytogenes population in the facility was destroyed by the ListexP100TM product. “I concluded that the genetic diversity of the bacteria in the facility was too high and that the bacteriophages could not be used as a control measure. However, there is much we do not understand about bacteriophages, and with a few adjustments, we might be able to use them in the food industry.”

Microbiological and molecular characterisation of L. monocytogenes

The bacteria were isolated and purified using basic microbiological culturing. Characterisation was done based on specific genes present in the bacterial genome. “I amplified these genes with polymerase chain reaction (PCR), using various primers targeting these specific genes,” Dr Strydom said. Some amplification results were analysed with a subsequent restriction digestion where the genes were cut in specific areas with enzymes to create fragments. The lengths of these fragments can be used to differentiate between strains. “I also compared the whole genomes of some of the bacterial strains.” The bacteriophages were then isolated from waste water samples at the facility using the isolated bacterial strains. “However, I was not able to isolate a bacteriophage that could infect the bacteria in the facility.

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept