Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 August 2023 | Story The Conversation | Photo supplied
Claudia Ntsapi
Dr Claudia Ntsapi, Basic Medical Sciences Lecturer at the University of the Free State.

Opinion article by , Basic Medical Sciences Lecturer


As the world population has grown older, Alzheimer’s disease has become increasingly common. Alzheimer’s disease is the most prevalent form of dementia. Dementia is a term used to describe a range of symptoms linked to the decline in brain function with age. Symptoms include memory loss, communication difficulties, problem-solving struggles, and personality or behavioural changes.

Alzheimer’s disease is an increasingly urgent global issue. The World Health Organization predicts that the number of people with the condition will triple by 2050.

Despite this growing problem, Alzheimer’s disease remains a relatively understudied condition. This is particularly the case in sub-Saharan countries such as South Africa. One major challenge is that Alzheimer’s is a complex condition with no known cure. However, researchers have identified several key risk factors associated with the disease. These include age, genetics, lifestyle factors and underlying medical conditions.

In recent years, one of the most promising areas of research on age-related diseases, such as Alzheimer’s disease, has been the accumulation of harmful proteins in the brain. Specifically amyloid-ß. Amyloid-ß has remained a prominent area of research in Alzheimer’s disease as its build-up is a classic feature in the development of the condition. Understanding its involvement in the disease process is crucial for advancing our knowledge and developing effective strategies to diagnose, prevent and treat the disease.

The accumulation of amyloid-ß can lead to the formation of plaques. These plaques can interfere with communication between brain cells. This ultimately contributes to cognitive decline and other symptoms associated with Alzheimer’s disease.

Amyloid-ß is a large membrane protein that is essential in neural growth and repair. But its corrupted form in later life can destroy nerve cells. This triggers the loss of thought and memory that is associated with Alzheimer’s.

We therefore sought to find out if dietary interventions, particularly intermittent fasting, would counteract the accumulation of amyloid-ß in the brain and potentially safeguard against age-related brain cell death.

In a paper published in 2021, my colleague and I showed that in experiments conducted in mice we found that intermittent fasting counteracted amyloid-ß accumulation in the brain. These findings were further confirmed in a paper published in May of 2022.

Our findings are an important contribution to the search for the potential role of dietary interventions and are consistent with previous studies supporting the idea that intermittent fasting may help counteract amyloid-ß accumulation in the brain and protect against age-related brain cell death. To my knowledge, the most recent study using a variation of intermittent fasting, was published in September 2022. The clinical branch of this study remains ongoing.

Research into the causes of Alzheimer’s has gathered pace in recent years with new ground being broken on a regular basis as scientists search for treatments.

Our study’s findings suggest that intermittent fasting may be an effective way to increase the efficiency of autophagy – the process that breaks down and recycles damaged or unnecessary cellular components, such as organelles and toxic proteins. This process can therefore reduce the risk of amyloid-ß build-up and associated brain cell death.

These findings are particularly significant because they shed light on the relationship between autophagy and the death of brain cells with age, and the potential therapeutic benefits of interventions that target this process.

How it works

Intermittent fasting is a dietary approach that involves regulating food intake by alternating periods of fasting and eating. This dietary regimen comprises periods of restricted food consumption, followed by periods of normal eating.

There are different types of intermittent fasting. One is time-restricted eating, where food is consumed within a specific time window each day. Alternate-day fasting is where food is restricted every other day.

Intermittent fasting has been shown to have various health benefits. Some of the benefits relate to the promotion of brain health.

Our study’s findings suggest that intermittent fasting may be an effective way to increase the efficiency of autophagy, an essential process for removing toxic or misfolded proteins that can build up in cells.

Sometimes autophagy doesn’t work properly to remove harmful proteins or other cellular components from cells. This has been strongly implicated in the development and progression of various age-related diseases, and is a target of research for potential therapies.

What we did

In our study we investigated the effects of intermittent fasting on brain cells in mice, and brain cells isolated from mice with increased amyloid-ß toxicity. Mice cells are frequently used as a model for human cells in scientific research. This is because of the significant genetic similarity between mice and humans. This use of animal models allows researchers to gain valuable insights and test hypotheses. It is generally considered ethically preferable before potentially conducting human studies.

We found that 24 to 48 hours of intermittent fasting by mice provided protection against cell death in specific regions of their brain. We noted increased autophagy levels in cells of fasted mice. Even in the presence of a high amyloid-ß protein load in brain cells, intermittent fasting maintained autophagy activity. And the process remained effective over a 21-day treatment intervention period.

By increasing the efficiency of autophagy, it is possible to maintain the removal of harmful proteins in cells, even as we age.

The findings of this study suggest that interventions such as intermittent fasting could potentially protect against the development of age-related diseases. This has important implications for public health.

Intermittent fasting is a relatively simple dietary intervention: it’s easy to do. It has the potential to be widely adopted as a preventive measure against the onset of age-related diseases. These findings also provide a basis for future research into the mechanisms by which intermittent fasting protects against brain cell death, exploring the potential for additional therapeutic interventions that target autophagy, and examining the effects of different fasting regimens on brain health.The Conversation

This article is republished from The Conversation under a Creative Commons license. Read the original article.

News Archive

UFS Safety Awareness March set to create a safe space for students
2017-07-27

 Description: Suspicious behavior Tags: safety, campaign, SRC, communication, awareness


The University of the Free State (UFS), in collaboration with various stakeholders, has dedicated the week of 24 to 28 July 2017 to creating awareness for the safety of students on and around its campuses.

UFS and CUT unite for safety
The highlight of the week will be on Thursday 27 July 2017 when a safety awareness march will take place from the Main Building on the Bloemfontein Campus to the Bram Fischer Building, where a memorandum will be handed over to Mr Sam Mashinini, MEC for Police, Roads, and Transport in the Free State. The march is a partnership between the UFS Student Representative Council (SRC) and the Central University of Technology (CUT).

 During a meeting on 24 July 2017, the Executive Committee of Senate granted formal approval for students and staff of the Bloemfontein Campus to take part in the safety march on 27 July 2017. For this reason, all lectures will be suspended from 11:00 to 13:00 on 27 July 2017 in order to give the campus community the opportunity to participate in the march. Academic staff, as well as staff in the administrative support services, are encouraged to join the march.

Programme for the safety march:


11:00: Marchers gather in front of the Main Building

11:15: Marchers depart from the Main Building to the Main Gate

11:30: Marchers exit the Main Gate and move towards the Central University of Technology (CUT). Students and staff who are unable to participate in the rest of the march, return to their work places or classes.

12:20: UFS and CUT marchers will gather at the Bram Fischer Building, situated on the corner of Nelson Mandela Avenue and Markgraaff Street. Here, the Rector and Vice-Chancellor of the UFS, Prof Francis Petersen, and the Vice-Chancellor and Principal of CUT, Prof Henk de Jager, will address the marchers, after which the memorandum will be read by the respective SRC Presidents and handed to Mr Mashinini.

Activities underway to raise safety awareness
During the week, the Student Representative Council (SRC), together with other stakeholders, have been involved in several activities on and off the Bloemfontein Campus, including door-to-door visits to student homes and residences on and around campus, awareness campaigns at all the gates of the campus, and a Safety Dialogue that will be held on Wednesday 26 July 2017 at the Equitas Auditorium. The aim of the Safety Week is to focus on informing, educating, and encouraging students as well as the Mangaung community at large, in order to work together in creating a safe environment for students.

The week started with the roll-out of an awareness campaign titled Reach Out, which is set to bring students and the community of Mangaung together to help decrease the number of violent crimes faced by students off campus. The communication plan includes safety messages, using outdoor billboards, posters on lampposts around the residential student areas, local community radio stations, campus media, and the university’s social media platforms.

A similar student safety awareness campaign will take place on the university’s Qwaqwa Campus during the week of 31 July 2017.



We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept