Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 August 2023 | Story The Conversation | Photo supplied
Claudia Ntsapi
Dr Claudia Ntsapi, Basic Medical Sciences Lecturer at the University of the Free State.

Opinion article by , Basic Medical Sciences Lecturer


As the world population has grown older, Alzheimer’s disease has become increasingly common. Alzheimer’s disease is the most prevalent form of dementia. Dementia is a term used to describe a range of symptoms linked to the decline in brain function with age. Symptoms include memory loss, communication difficulties, problem-solving struggles, and personality or behavioural changes.

Alzheimer’s disease is an increasingly urgent global issue. The World Health Organization predicts that the number of people with the condition will triple by 2050.

Despite this growing problem, Alzheimer’s disease remains a relatively understudied condition. This is particularly the case in sub-Saharan countries such as South Africa. One major challenge is that Alzheimer’s is a complex condition with no known cure. However, researchers have identified several key risk factors associated with the disease. These include age, genetics, lifestyle factors and underlying medical conditions.

In recent years, one of the most promising areas of research on age-related diseases, such as Alzheimer’s disease, has been the accumulation of harmful proteins in the brain. Specifically amyloid-ß. Amyloid-ß has remained a prominent area of research in Alzheimer’s disease as its build-up is a classic feature in the development of the condition. Understanding its involvement in the disease process is crucial for advancing our knowledge and developing effective strategies to diagnose, prevent and treat the disease.

The accumulation of amyloid-ß can lead to the formation of plaques. These plaques can interfere with communication between brain cells. This ultimately contributes to cognitive decline and other symptoms associated with Alzheimer’s disease.

Amyloid-ß is a large membrane protein that is essential in neural growth and repair. But its corrupted form in later life can destroy nerve cells. This triggers the loss of thought and memory that is associated with Alzheimer’s.

We therefore sought to find out if dietary interventions, particularly intermittent fasting, would counteract the accumulation of amyloid-ß in the brain and potentially safeguard against age-related brain cell death.

In a paper published in 2021, my colleague and I showed that in experiments conducted in mice we found that intermittent fasting counteracted amyloid-ß accumulation in the brain. These findings were further confirmed in a paper published in May of 2022.

Our findings are an important contribution to the search for the potential role of dietary interventions and are consistent with previous studies supporting the idea that intermittent fasting may help counteract amyloid-ß accumulation in the brain and protect against age-related brain cell death. To my knowledge, the most recent study using a variation of intermittent fasting, was published in September 2022. The clinical branch of this study remains ongoing.

Research into the causes of Alzheimer’s has gathered pace in recent years with new ground being broken on a regular basis as scientists search for treatments.

Our study’s findings suggest that intermittent fasting may be an effective way to increase the efficiency of autophagy – the process that breaks down and recycles damaged or unnecessary cellular components, such as organelles and toxic proteins. This process can therefore reduce the risk of amyloid-ß build-up and associated brain cell death.

These findings are particularly significant because they shed light on the relationship between autophagy and the death of brain cells with age, and the potential therapeutic benefits of interventions that target this process.

How it works

Intermittent fasting is a dietary approach that involves regulating food intake by alternating periods of fasting and eating. This dietary regimen comprises periods of restricted food consumption, followed by periods of normal eating.

There are different types of intermittent fasting. One is time-restricted eating, where food is consumed within a specific time window each day. Alternate-day fasting is where food is restricted every other day.

Intermittent fasting has been shown to have various health benefits. Some of the benefits relate to the promotion of brain health.

Our study’s findings suggest that intermittent fasting may be an effective way to increase the efficiency of autophagy, an essential process for removing toxic or misfolded proteins that can build up in cells.

Sometimes autophagy doesn’t work properly to remove harmful proteins or other cellular components from cells. This has been strongly implicated in the development and progression of various age-related diseases, and is a target of research for potential therapies.

What we did

In our study we investigated the effects of intermittent fasting on brain cells in mice, and brain cells isolated from mice with increased amyloid-ß toxicity. Mice cells are frequently used as a model for human cells in scientific research. This is because of the significant genetic similarity between mice and humans. This use of animal models allows researchers to gain valuable insights and test hypotheses. It is generally considered ethically preferable before potentially conducting human studies.

We found that 24 to 48 hours of intermittent fasting by mice provided protection against cell death in specific regions of their brain. We noted increased autophagy levels in cells of fasted mice. Even in the presence of a high amyloid-ß protein load in brain cells, intermittent fasting maintained autophagy activity. And the process remained effective over a 21-day treatment intervention period.

By increasing the efficiency of autophagy, it is possible to maintain the removal of harmful proteins in cells, even as we age.

The findings of this study suggest that interventions such as intermittent fasting could potentially protect against the development of age-related diseases. This has important implications for public health.

Intermittent fasting is a relatively simple dietary intervention: it’s easy to do. It has the potential to be widely adopted as a preventive measure against the onset of age-related diseases. These findings also provide a basis for future research into the mechanisms by which intermittent fasting protects against brain cell death, exploring the potential for additional therapeutic interventions that target autophagy, and examining the effects of different fasting regimens on brain health.The Conversation

This article is republished from The Conversation under a Creative Commons license. Read the original article.

News Archive

Wildlife researcher in ground-breaking global research on giraffes
2017-10-20

Description: Giraffe read more Tags: giraffe, conservation, Dr Francois Deacon, Last of the Long Necks, Catching Giants 

Dr Deacon from the Department of Animal, Wildlife and Grassland
Sciences at the University of the Free State (UFS),
lead a multispecialist research group to catch
and collar giraffe to collect data that will
contribute to the conservation of these animals.
Photo: Prof Nico Smith


Capturing 51 giraffes without any injuries or mortalities to collect data that will contribute to the conservation of these animals is not for everyone. Capturing a giraffe with minimum risk to the animal and the people involved, requires extraordinary skill, planning, and teamwork. “This exercise is a dangerous task, since a well-placed kick from these large and extremely powerful animals can cause serious injuries. Early in October was the first time that giraffes were captured on such a large scale,” said wildlife researcher Dr Francois Deacon.
 
Dr Deacon from the Department of Animal, Wildlife and Grassland Sciences at the University of the Free State (UFS), led a multispecialist research group of over 30 people from 10 different countries to collect information about these little-known animals.

UFS first to collar giraffe
Taking a global approach, the team responsible for this intricate process consisted of wildlife biologists, conservationists, interdisciplinary scientists and five specialist veterinarians who are experienced in catching and working with wild animals. Specialised drugs sponsored by Dr Kobus Raath from Wildlife Pharmaceuticals, tested for the first time and administered with a dart gun were used to tranquillise the giraffe, which then allowed for the GPS collars to be fitted.  These collars, sponsored by Africa Wildlife Tracking, enable the researchers to record the location of individual giraffe for up to two years, give 24/7 readings, irrespective of weather conditions. In this cost-effective manner, data can be gathered on climatic factors, giraffe communication, social behaviour, home ranges, seasonal movements, human and giraffe interaction zones, as well as migration routes and the duration of the migration process. The collars will effectively be used to locate individuals to collect faecal samples for hormonal cycles, stress hormones, nutrient deficiencies based on diet and also internal parasites. 

“This knowledge we gain is the key to all keys in saving this iconic animal from becoming extinct,” said Dr Deacon.

Six years ago, during a pilot study, Dr Deacon was the first researcher to fit giraffes with a GPS collar. Collaring is less invasive and allows researchers to collect detailed samples. Not only was extensive knowledge and experience gained during the process, but he also initiated interest from the filmmaker and conservationist, Ashley Scott Davison, executive producer of Iniosante Inc. 

Getting to tell the story

Davison, who was doing research for a film on giraffe learnt about the silent extinction of the species. In a great number of countries giraffe numbers have been declining by as much as 40% over only a few years since 2000. Today West Africa has between 400 to 600 giraffe left while four out of five giraffes were lost in East Africa since 2000. This is a considerable decline in numbers and poses a real threat to the survival of the species in the longer term. At the end of 2016, the giraffe was classified as vulnerable on the International Union for Conservation of Nature Red Data list.

According to Davison, children in school learn about the destruction caused by ivory poaching and habitat loss. But in Africa today, there are six times as many elephants as there are giraffes. 

In the process to find out more about this majestic species Davison learnt of Dr Deacon’s work. After being introduced to and spending time with Dr Deacon, Davison not only describes the UFS as the leader in the conservation of giraffes but he returned to the university, three times to help build a dedicated research team to address unanswered research questions within various disciplines.

Flowing from the affiliation with the UFS is Iniosante’s award-winning production of a documentary, “Last of the Longnecks”. The film has received several awards, including official selection at the 2017 Global Peace Film Festival, the Wildlife Conservation Film Festival and the Environmental Film Festival in the US capital. 

The film team accompanied the multispecialist research team last week to gather footage for a follow-up documentary, “Catching Giants”. This film is expected to air in middle 2018.

 Video clip of the event: https://www.dropbox.com/s/d3kv9we690bwwto/giraffe_UFS_revision-01a.mp4?dl=0

Video clip of the event: RooistoelTV

Former articles on this topic:

18 Nov 2016: http://www.ufs.ac.za/templates/news-archive-item?news=7964 
23 August 2016: http://www.ufs.ac.za/templates/news-archive-item?news=7856 
9 March 2016:Giraffe research broadcast on National Geographic channel
18 Sept 2015 Researchers reach out across continents in giraffe research
29 May 2015: Researchers international leaders in satellite tracking in the wildlife environment

 

 

 

 

 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept