Latest News Archive

Please select Category, Year, and then Month to display items
Previous Archive
04 August 2023 | Story The Conversation | Photo supplied
Claudia Ntsapi
Dr Claudia Ntsapi, Basic Medical Sciences Lecturer at the University of the Free State.

Opinion article by , Basic Medical Sciences Lecturer


As the world population has grown older, Alzheimer’s disease has become increasingly common. Alzheimer’s disease is the most prevalent form of dementia. Dementia is a term used to describe a range of symptoms linked to the decline in brain function with age. Symptoms include memory loss, communication difficulties, problem-solving struggles, and personality or behavioural changes.

Alzheimer’s disease is an increasingly urgent global issue. The World Health Organization predicts that the number of people with the condition will triple by 2050.

Despite this growing problem, Alzheimer’s disease remains a relatively understudied condition. This is particularly the case in sub-Saharan countries such as South Africa. One major challenge is that Alzheimer’s is a complex condition with no known cure. However, researchers have identified several key risk factors associated with the disease. These include age, genetics, lifestyle factors and underlying medical conditions.

In recent years, one of the most promising areas of research on age-related diseases, such as Alzheimer’s disease, has been the accumulation of harmful proteins in the brain. Specifically amyloid-ß. Amyloid-ß has remained a prominent area of research in Alzheimer’s disease as its build-up is a classic feature in the development of the condition. Understanding its involvement in the disease process is crucial for advancing our knowledge and developing effective strategies to diagnose, prevent and treat the disease.

The accumulation of amyloid-ß can lead to the formation of plaques. These plaques can interfere with communication between brain cells. This ultimately contributes to cognitive decline and other symptoms associated with Alzheimer’s disease.

Amyloid-ß is a large membrane protein that is essential in neural growth and repair. But its corrupted form in later life can destroy nerve cells. This triggers the loss of thought and memory that is associated with Alzheimer’s.

We therefore sought to find out if dietary interventions, particularly intermittent fasting, would counteract the accumulation of amyloid-ß in the brain and potentially safeguard against age-related brain cell death.

In a paper published in 2021, my colleague and I showed that in experiments conducted in mice we found that intermittent fasting counteracted amyloid-ß accumulation in the brain. These findings were further confirmed in a paper published in May of 2022.

Our findings are an important contribution to the search for the potential role of dietary interventions and are consistent with previous studies supporting the idea that intermittent fasting may help counteract amyloid-ß accumulation in the brain and protect against age-related brain cell death. To my knowledge, the most recent study using a variation of intermittent fasting, was published in September 2022. The clinical branch of this study remains ongoing.

Research into the causes of Alzheimer’s has gathered pace in recent years with new ground being broken on a regular basis as scientists search for treatments.

Our study’s findings suggest that intermittent fasting may be an effective way to increase the efficiency of autophagy – the process that breaks down and recycles damaged or unnecessary cellular components, such as organelles and toxic proteins. This process can therefore reduce the risk of amyloid-ß build-up and associated brain cell death.

These findings are particularly significant because they shed light on the relationship between autophagy and the death of brain cells with age, and the potential therapeutic benefits of interventions that target this process.

How it works

Intermittent fasting is a dietary approach that involves regulating food intake by alternating periods of fasting and eating. This dietary regimen comprises periods of restricted food consumption, followed by periods of normal eating.

There are different types of intermittent fasting. One is time-restricted eating, where food is consumed within a specific time window each day. Alternate-day fasting is where food is restricted every other day.

Intermittent fasting has been shown to have various health benefits. Some of the benefits relate to the promotion of brain health.

Our study’s findings suggest that intermittent fasting may be an effective way to increase the efficiency of autophagy, an essential process for removing toxic or misfolded proteins that can build up in cells.

Sometimes autophagy doesn’t work properly to remove harmful proteins or other cellular components from cells. This has been strongly implicated in the development and progression of various age-related diseases, and is a target of research for potential therapies.

What we did

In our study we investigated the effects of intermittent fasting on brain cells in mice, and brain cells isolated from mice with increased amyloid-ß toxicity. Mice cells are frequently used as a model for human cells in scientific research. This is because of the significant genetic similarity between mice and humans. This use of animal models allows researchers to gain valuable insights and test hypotheses. It is generally considered ethically preferable before potentially conducting human studies.

We found that 24 to 48 hours of intermittent fasting by mice provided protection against cell death in specific regions of their brain. We noted increased autophagy levels in cells of fasted mice. Even in the presence of a high amyloid-ß protein load in brain cells, intermittent fasting maintained autophagy activity. And the process remained effective over a 21-day treatment intervention period.

By increasing the efficiency of autophagy, it is possible to maintain the removal of harmful proteins in cells, even as we age.

The findings of this study suggest that interventions such as intermittent fasting could potentially protect against the development of age-related diseases. This has important implications for public health.

Intermittent fasting is a relatively simple dietary intervention: it’s easy to do. It has the potential to be widely adopted as a preventive measure against the onset of age-related diseases. These findings also provide a basis for future research into the mechanisms by which intermittent fasting protects against brain cell death, exploring the potential for additional therapeutic interventions that target autophagy, and examining the effects of different fasting regimens on brain health.The Conversation

This article is republished from The Conversation under a Creative Commons license. Read the original article.

News Archive

2011 Leadership group meets for the first time
2011-08-01

 

Photo: Hannes Pieterse

The long application process, panel interviews and nail-biting wait finally came to an end the past week, when the cream of our first-year class of 2011 gathered in the Scaena Theatre on our Bloemfontein Campus, for their first group meeting as the selected Leadership for Change cohort.

These 150 students, from all our faculties, will over the following year be groomed to be leaders, not only at the university, but also in their respective fields and chosen careers.
The first group of students will depart for their respective universities in America and Europe on 22 September 2011, where they will spend two weeks. The second group of students will depart for universities in Japan in January 2012.

Although they have all passed a gruelling selection process, the real hard work is only starting now for these bright young students.

The programme will take place in four phases. During the preparation phase, which has now kicked off, students are prepared for the experience ahead, while being made aware of exactly what to expect from the programme.

In the study-abroad phase, students will be placed at 15 partner institutions in various countries, and will be divided into groups of six to twelve people. According to Prof. Aldo Stroebel, Director of International Academic Programmes, the groups will be diverse, in that there will be a mix of races, genders and study fields, which should guarantee dynamic interaction.

During the group’s first meeting this week, they were informed of the important goals of the Leadership for Change Programme, by Mr Rudi Buys, Dean of Student Affairs.

He imparted the gravity of their selection on the students by saying, “You may not get it yet, but I understand the reason we are all here. I understand that by looking at what you achieve after this programme, we can tell what the country could possibly achieve in the future. It is immensely moving to see the way you all carry yourselves, since I can see something special and unique in each of you.”
“You are all here, not because of which school you went to, or your race, or who your parents are, but because you all show potential to be something great.”

Prof. Stroebel reminded the group that despite the excitement that they all have about visiting universities in America, Europe and Asia, these visits should be seen as study trips.

“You may have three days to acquaint yourselves with the surroundings, but after that there will be very little sightseeing and a lot of hard work.”

They will participate in programmes designed by their respective host institutions, aimed at exposing them to different cultures, lifestyles and beliefs.

They will be accompanied by our staff, who Prof. Stroebel says will grow with the students, as they will be expected to guide the students through their tasks and assignments and interact with them on a daily basis.

Upon their return, there will be a debriefing phase, during which they will be expected to provide feedback on their experiences, as well as submit assignments which they will be assigned at their respective institutions.

The final phase is known as the impact phase, as this will see the students apply what they have learned in a positive manner and help drive the university to the future and to becoming a world-leading tertiary institution.

 

Media Release
1 August 2011
Issued by: Lacea Loader
Director: Strategic Communication
Tel: 051 401 2584
Cell: 083 645 2454
E-mail: news@ufs.ac.za


 

We use cookies to make interactions with our websites and services easy and meaningful. To better understand how they are used, read more about the UFS cookie policy. By continuing to use this site you are giving us your consent to do this.

Accept